
International Journal of Information Technology and Knowledge Management
January-June 2011, Volume 4, No. 1, pp. 63-67

AN APPROACH FOR DETECTION AND CORRECTION OF DESIGN
DEFECTS IN OBJECT ORIENTED SOFTWARE

Nirmal Kr. Gupta1 & Mukesh Kr. Rohil2

The presence of design defects in object oriented software can have a severe impact on the quality of software. The detection
and correction of design defects is important for cost effective maintenance. In this work we propose an automatic detection
technique which uses the design patterns as reference to detect the design defects in existing software design. We also
propose a correction technique which can refactor the code to meet the design specifications using the concept of class
slicing. We can use this technique for any code in which classes are excessively coupled together, thereby not meeting with
the good design specifications, for an object oriented software.

1. INTRODUCTION

Software systems have become an indispensable part of
business and commerce in modern world. Therefore the
software quality has become vital both to ensure the proper
functioning of the systems and to reduce development and
maintenance cost. The quality of software is assured during
the whole life cycle of software development, which aims
to detect errors earlier during development. The errors
caused during software design are called design defects [1].
If these errors and defects are detected earlier in design phase
they can not move to the next stage of development or
maintenance or in worst case to the deployment phase.

Software is said to be evolved. For example, in software
maintenance when the software is enhanced, modified or
changed for a new requirement, the software code becomes
more complex and the software design changes from the
original design. One important step towards maintaining
object oriented software is to detect its design defects for
ease of future maintenance. According to Fowler [2] a
“design defect” is “bad smell of design” mainly due to
violation of one or more design principles. These design
principles are called as heuristics [3] and these rules should
be thought of as a series of warning bells that will ring when
violated.

According to Moha [4] the “design defects are bad
solution” to recurring design problems in object oriented
systems. Design defects are problems resulting from bad
design ranging from high level design problems such as
antipatterns (anti-pattern is defined as a design pattern that
may be commonly used but is ineffective and/or
counterproductive in practice [10]) to low level or local
problems such as code smells. Since the design defects are
because of bad solutions to recurring problems design,

1,2CSIS Group, BITS-Pilani, Pilani, Rajasthan, India

Email: 1nirmalgupta@bits-pilani.ac.in, 2rohil@bits-pilani.ac.in

whose origins are from poor design practices [5] and also
different defects which are “deviations from specifications
or requirements”. These may result in failures in the
operations [6] [7]. They include problems at different levels
of granularity: Architectural problems such as anti-patterns
[8] and problems such as low bad smells [2] which are
usually signs of anti-patterns.

The defects have a negative impact on the quality of
object-oriented systems and make it difficult to address
debugging and development. Therefore, their detection and
correction early in the development process can significantly
reduce development costs and maintenance [12]. But their
detection requires significant resources in time and
personnel and is subject to many errors because the defects
usually involve several classes and methods. During
maintenance of the software, one needs to analyze the code
to understand its structure and behavior. After that the
identification of correct location is needed so that new
requirements could be added or existing defects could be
removed. Also, another challenge is to see that the
modifications should not break the functionality of rest of
the software. Around 75% of software life cycle efforts and
around 80% of development time is devoted to the
maintenance of the software [9]. The correction of extension
of software can be done by experts who are capable with
both the forward and reverse engineering skills. After
identification of defects, developers can use refactoring
techniques to eliminate defects. Design defects can be
classified in three categories namely: Intraclass, Interclass
and behavioral design defects [13]. To address intraclass
design defect class slicing [14] can be used as a refactoring
technique to redesign the classes and maintain their
relationship and behavior.

2. BACKGROUND STUDY

Several approaches have been proposed for detection and
correction of software design defects. According to Moha

mailto:1nirmalgupta@bits-pilani.ac.in
mailto:2rohil@bits-pilani.ac.inwhose

64 NIRMAL KR. GUPTA & MUKESH KR. ROHIL

[4] the detection and correction of design defects due to
poor design choices, are difficult because of the lack of
precise specifications of defects and tools for their detection
and correction. He provides a technique for automatic
generation and detection of algorithms from the design
specifications. Other techniques described by Radu [15]
provide metric based rules to detect ten important flaws of
object-oriented design found in the literature. The internal
structure of the source code helps the programmers to
understand a system to improve the overall design. If
something goes wrong with the source code, it gives rise to
code smell [2]. Munro [16] addresses the bad smells by
identifying the characteristics of a bad smell through the
use of a set of software metrics. Moha et al. [17] define
design defects as occurring errors in the design of software
that come from the absence or the bad use of design patterns.
According to Moha the design defects are software defects
at the architectural level and their detection and correction
is important to improve software quality. They presented
several techniques and tools to detect design pattern defects
and also described a case study to illustrate the use of these
techniques and tools.

Majority of the effort is spent on identifying those parts
of the system that are affected by particular design defects,
and which need to be redesigned in order to achieve the
reengineering goal. Radu [18] presented a metrics-based
approach for detecting design problems, and describes
two concrete techniques for the detection of two well-
known design problems: god-classes and data-classes. The
detection and correction of design defects are two different
approaches and there exists a conceptual gap between these
two. There is a lack of appropriate support for the automated
mapping of design defects to possible solutions. Adrian Trifu
et. al. [19] describe an approach based on the concept of
“correction strategies” which serve as reference descriptions
that enable a human assisted tool to plan and perform all
necessary steps for the safe removal of detected design
defects, with special concern towards the targeted quality
goals of the restructuring process.

These techniques are restricted by the services-
platforms for discovering the underlying defects. They
mainly use the measurements to detect defects, while
ignoring other important characteristics of systems, such as
architecture. Refactorings are structural transformations that
can be applied to a software system to perform design
changes without modifying its behavior. They are actually
the change suggestions and are not directly applicable over
a system. There are different stages of a refactoring
technique. A review and a thorough analysis begin before
applying a refactoring technique, which results in a list of
findings. These various stages of refactoring are described
by Mens and Tourwe [20].

3. DEFECT DETECTION APPROACH

We provide an approach to get a systematic method to detect
design defects precisely and correct them through a
refactoring technique. The basic concept for design defect
detection and correction technique is shown in Figure 1.

Fig. 1: Design Defect Detection and Correction Process

The detection process is explained below:

3.1. Specify the Quality Goals: For any particular
system the quality goals which have more priority than other
quality goals must be chosen. The impact of the specific
quality factor in relation with that quality goal and the
decision of detection of any particular design defect can be
determined.

3.2. The Static Program Analysis: It follows the
program analysis techniques like control and data flow
analysis techniques so that it gives a program dependency
graph. This program dependency graph works as an abstract
model for the program and can be used effectively by the
metric computation block to compute the object oriented
metrics for the given program.

3.3. Metric Computation: According to specific
quality goals the corresponding quality metrics may be
targeted such as computed object oriented metrics like size,
complexity, coupling and cohesion metrics. This type of
model provides a strategy for detecting design defects using
metrics. Metric values are divided into five different levels:
“very low”, “low”, “medium”, “high” and “very high”.
Classes which have metrics values belonging to a specified
level are kept as candidate.

3.4. Object Oriented Design Knowledge Base: An
object oriented design knowledge base consists of four parts
which are called as design principles, design defects, design
metric suites and features. The design features relate the
primary classifier to this level. A design pattern can be a
reference for a good design. The solution given by a design
pattern is based on the design concepts of experienced
software engineers [21]. The design knowledge base consists
of a meta model to represent the design patterns. There exists
various meta-models to represent the design patterns but

AN APPROACH FOR DETECTION AND CORRECTION OF DESIGN DEFECTS IN OBJECT ORIENTED SOFTWARE 65

they are not specifically designed towards detection and code
transformation. We can use a meta model given in [13].

The design principles consist of rules for good design
as described by the meta model for design patterns. These
design rules are based on the design principles and their
goal is to improve quality factors of the system and to avoid
occurrence of design defect.

3.5. Detection Process: The detection process is a two
level process. The first level is a primary classifier which
aims at indicating a preliminary indication of design defect.
Detection of potential defects is done by some primitive rules
defined in the object oriented knowledge base. For
describing the categories at this level the fuzzy terms are
most suitable because they can be configured later for
purpose of flexibility and it also reflects the uncertainty of
the precise value in detection of design defects.

At the second level of detection, the aim is to detect
the design defects accurately. At this level the secondary
classifier measures more details about the defects detected
by primary classifier. To improve the accuracy of level two
measurements we measure each design feature by using
more than one metrics.

3.6. Design Defect Identification: Identifying all the
possible design defects doesn’t make sense because when
it is performed automatically it may lead to a large number
of probable design defects present in the system. These
automatically generated defects must be inspected manually
and the user must decide which are relevant according to
earlier defined quality goals. It identifies the design defects
in terms of design patterns.

3.7. Suggest Changes: In this step the process suggests
the necessary changes to be done in the design to achieve
the quality goals. These changes are actually UML
specifications obtained from design patterns. These change
suggestions can be used to do the correction in the defective
design.

4. DEFECT CORRECTION APPROACH

The correction approach, on receiving the suggested
changes, generates the required changes in the code. The
technique considers the description of solution and its
variation to some given defect. The technique is explained
through an example in figure 2.

The technique, based on class slicing [22], targets
correction which includes the specific behavior preserving
code transformation technique including a redesign
proposal. It may contain code refactoring technique,
behavior altering transformation, conditional or iterative
behavior altering transformations. The code refactoring
technique which includes refactoring plan can either be
executed automatically or in a semi automatic manner. The

overall behavior of the code should not change i.e. the
preconditions and post conditions of the method remains
the same. In this way the behavior of class object would be
same as a whole.

The following are the steps through which the technique
will work.

Fig. 2: Defect Correction through Slicing Classes

4.1. Trimming the Classes: This step takes Program
Dependency Graph (PDG) as input and forward trim starts
with all nodes with no ancestors and removes them and all
their edges. After removal the nodes with no ancestors may
appear so this trimming will continue until no more nodes
can be removed [22]. Similarly the backward trim performs
the same operation but starts with classes with no
descendants and uses topological sorting to find test orders.
The purpose of trimming is to separate classes which have
no concerning cycles and to pre-order these classes.

4.2. Refactoring Formalization: The refactoring of the
target software architecture must be done step-wise via a
number of well-defined, small increments. Each increment
might include a top-down refinement activity to detail and
complete the software architecture. We can also use bottom-
up refactoring activities to refine and clean-up inconsistent
or insufficient design decisions. The decision is influenced
by the fact that behavior preserving conditions must be
checked. Class slicing applies Object Oriented program
slicing on PDG to extract class. The strategy to refactoring
a class involves various steps. In first step we break Strongly
Coupled Classes (SCC).

In Figure 2 for any given two nodes X and Y (represents
two classes X and Y) in PDG, C

XY
 denotes the measure of

Coupling Between Objects (CBO) between classes X and
Y [23]. CBO is measured by counting the number of distinct
non- inheritance related class hierarchies on which a class
depends. Excessive coupling prevents reuse of classes by
other user classes [11].The higher the coupling the more

66 NIRMAL KR. GUPTA & MUKESH KR. ROHIL

sensitive the system is to changes in other parts of the design,
and therefore maintenance is more difficult.

4.3. Slicing Classes: This step searches for a class which
can be isolated at first. The main purpose of this step is to
search a class that can be isolated. We separate this class to
break cycles from the SCC. First of all, we must select one
cycle to be considered at a time. But the first priority type is
the smallest cycle of all SCCs from cycle detection. If desired
class is found, we will use class slicing to separate and order
them. After that the adjacency cycle is connected and class
slicing is repeated until no cycle remains. We use the class
slicing technique discussed by Jaroenpiboonkit and
Suwannasart [22] with modification that we have considered
CBO between two classes. The value of CBO should be
below a threshold value defined by the designer of the
classes. If it is not then the corresponding class must be
sliced. For example in Figure 2 C

CD
 is above threshold and

therefore class C must be sliced. The class C itself is also
coupled with classes A and B in such a way that these classes
have methods which use the methods of class C. The class
C is analyzed to find which of its methods are called by
classes A and B. We make two groups of methods in class
C which are called by classes A and B respectively. These
are designated as mC

1
 and mC

2
 respectively. The class C

now can be sliced into C
1
 and C

2
 having methods mC

1
 and

mC
2
 respectively. These sliced classes may also have

coupling with other classes. If the CBO of sliced classes is
also greater than threshold then slicing again to be applied
for target class.

4.4. Software Redesign: Software redesign is
concerned with identiûcation, application and refinement
of new ways to improve and transform software processes.
Based on the suggestions to change the design this step
modifies the earlier design in defect.

4.5. Result Refinement: The detected design defects
must be checked again to remove the false positives. The
source code is again analyzed for the detected/undetected
design defects. The design defects which look to affect
severely must be figured out first.

5. CONCLUSION AND FUTURE WORK

Detection of design defects is important for improving the
quality of object oriented software systems. By automated
correction of these defects at appropriate time, total cost of
software development is reduced because the manual
detection of defective design is tedious and time consuming.
In this work we presented a systematic technique that covers
the process of design defects detection using object oriented
patterns as knowledge base, and also proposed a correction
technique which uses class slicing to refactor the classes to
improve the design. This method may facilitate the
development of concrete tools for the detection and
correction of design defects. The tool developed will be

helpful for validating the concepts by applying to various
case studies. The limitation of this approach is that it may
take more effort in refactoring if most of the classes are
highly coupled with other classes.

REFERENCES

[1] Subramanyam, R. Krishnan, M. S., “Empirical Analysis of
CK Metrics for Object-oriented Design Complexity:
implications for Software Defects”, IEEE Transactions on
Software Engineering, 2003, 29, Part 4, Pages 297-310.

[2] M. Fowler, “Refactoring - Improving the Design of Existing
Code”, Addison-Wesley, 1st Edition, June 1999.

[3] Riel, A. J. 1996 Object-Oriented Design Heuristics, 1st.
Addison-Wesley Longman Publishing Co., Inc.

[4] Moha, N. 2007, “Detection and Correction of Design
Defects in Object-oriented Designs”, In Companion to the
22nd ACM SIGPLAN Conference on Object-Oriented
Programming Systems and Applications Companion
(Montreal, Quebec, Canada, October 21-25, 2007).
OOPSLA ’07. ACM, New York, NY, 949-950.

[5] Perry, D. E. and Wolf, A. L. 1992, “Foundations for the
Study of Software Architecture”, SIGSOFT Softw. Eng.
Notes 17, 4 (Oct. 1992), 40-52]. They are the Opposite of
Design Patterns [Gamma, E., Helm, R., Johnson, R., and
Vlissides, J. (1995). Design Patterns - Elements of Reusable
Object-Oriented Software, Addison-Wesley.

[6] Fenton, N. E. and Neil, “M. 2000. Software Metrics:
Roadmap”, In Proceedings of the Conference on the Future
of Software Engineering, (Limerick, Ireland, June 04-11,
2000). ICSE ’00. ACM, New York, NY, 357-370.

[7] M. H. Halstead, “Elements of Software Science”, Elsevier
New Holland, New York, 1977.

[8] Brown et al. 1998, “AntiPatterns, Refactoring Software,
Architectures and Projects in Crisis”, Wiley Computer
Publishing.

[9] S. Woods, A. Quilici, and Q. Yang, “Constraint-Based
Design Recovery for Software Re-engineering: Theory and
Experiments”, Kluwer Academic Publishers, 1998.

[10] Budgen, D. (2003), “Software Design”, Second Edition,
Addison-Wesley.

[11] A. A. Zakaria and H. Hosny, “Metrics for Aspect-oriented
Software Design”, In AOM: Aspect-Oriented Modeling with
UML, AOSD, March 2003.

[12] Pressman, “R. S. 1996 Software Engineering: a
Practitioner’s Approach”, 4th. McGraw-Hill Higher
Education.

[13] Guéhéneuc, Y. and Albin-Amiot, H. 2001, “Using Design
Patterns and Constraints to Automate the Detection and
Correction of Inter-Class Design Defects”, In Proceedings
of the 39th international Conference and Exhibition on
Technology of Object-Oriented Languages and Systems
(Tools39) (July 29 - August 03, 2001). TOOLS. IEEE
Computer Society, Washington, DC, 296.

[14] Larsen, L. and Harrold, M. J. 1996, “Slicing Object-oriented
Software”, In Proceedings of the 18th International
Conference on Software Engineering (Berlin, Germany,

AN APPROACH FOR DETECTION AND CORRECTION OF DESIGN DEFECTS IN OBJECT ORIENTED SOFTWARE 67

March 25 - 29, 1996), International Conference on Software
Engineering. IEEE Computer Society, Washington, DC,
495-505.

[15] Radu Marinescu, “Detection Strategies: Metrics-Based
Rules for Detecting Design Flaws”, Proceedings of the 20th
IEEE International Conference on Software Maintenance
(ICSM 2004), IEEE Computer Society Press, pages 350 -
359, 2004.

[16] Munro, M. J. 2005, “Product Metrics for Automatic
Identification of “Bad Smell” Design Problems in Java
Source-Code”, In Proceedings of the 11th IEEE
International Software Metrics Symposium (September 19-
22, 2005). METRICS. IEEE Computer Society, Washington,
DC, 15.

[17] Naouel Moha, Duc-Loc Huynh, Yann-Gaël Guéhéneuc, “A
Taxonomy and a First Study of Design Pattern Defects”,
Proceedings of the STEP International Workshop on Design
Pattern Theory and Practice, September 25-30, 2005,
Budapest, Hungary.

[18] Radu Marinescu, “Detecting Design Flaws via Metrics in
Object-Oriented Systems”, Proceedings of 39th
International Conference and Exhibition on Technology of
Object-Oriented Languages and Systems (TOOLS39), IEEE
Computer Society Press, 2001.

[19] Trifu, A., Seng, O., and Genssler, T. 2004, “Automated
Design Flaw Correction in Object-Oriented Systems”, In
Proceedings of the Eighth Euromicro Working Conference
on Software Maintenance and Reengineering (Csmr’04)
(March 24 - 26, 2004), CSMR. IEEE Computer Society,
Washington, DC, 174.

[20] T. Mens, “T. Tourwe: A Survey of Software Refactoring”,
IEEE Transactions on Software Engineering, 30, No. 2,
February 2004.

[21] Beck, K., Crocker, R., Meszaros, G., Vlissides, J., Coplien,
J. O., Dominick, L., and Paulisch, F. 1996, “Industrial
Experience with Design Patterns”, In Proceedings of the
18th International Conference on Software Engineering
(Berlin, Germany, March 25 - 29, 1996), International
Conference on Software Engineering. IEEE Computer
Society, Washington, DC, 103-114.

[22] Jaroenpiboonkit, J. and Suwannasart, T. 2007, “Finding a
Test Order using Object-Oriented Slicing Technique”, In
Proceedings of the 14th Asia-Pacific Software Engineering
Conference (December 04 - 07, 2007), APSEC. IEEE
Computer Society, Washington, DC, 49-56.

[23] Briand, L. C., Daly, J. W., and Wüst, J. K. 1999, “A Unified
Framework for Coupling Measurement in Object-Oriented
Systems”, IEEE Trans. Softw. Eng. 25, 1, Jan. 1999, 91-
121.

