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A fuzzy rule-based system consists of fuzzy if-then rules such as “If x1 is small and x2 is small than y is large”. The problem
with existing fuzzy rule-based systems is that the size of the rule-base (number of rules) increases exponentially with the
increase of the number of fuzzy sets involved in the rules. This exponential increase in size of the rule-base increases the
search time and hence the problem solving time, and also the memory space required. In this paper a fuzzy rule-base
compaction using genetic algorithm is proposed. The proposed approach consists of three phases: Knowledge acquisition
phase, Encoding phase, and Compaction phase or Optimization phase. In knowledge acquisition phase information from
various knowledge sources i.e. experts and machine learning methods is integrated into a single knowledge base. In encoding
phase rule set and corresponding membership functions from different knowledge sources is encoded into a variable length
string or chromosomes so that they can contribute to the genetic optimization approach. In optimization phase genetic
algorithm that results in an optimal or nearly optimal set of fuzzy rules and membership functions from the initial set of
rules and membership function is proposed.
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1. INTRODUCTION

Fuzzy logic improves classification and decision support
of rule based systems by allowing the use of overlapping
class definitions and interpretability of the used results by
providing more insight the systems and decision making
process. The automatic determination of fuzzy rules from
data has been approached by several different techniques:
neuro-fuzzy methods, fuzzy clustering in combination with
GA. It is an open question as to what is the best way to
extract rules from trained rule base in domains involving
classification. The complete rule base for an expert system
can be seen as an collection of different classification
problem rules. The previous approaches were based on the
exhaustive analysis of rule base have already been
demonstrated to be intractable in that scale up factor
increases exponentially with the increase in number of
attributes.

The genetic algorithm (GA) is a combinatorial
optimizer that is domain-independent; it is applicable to all
functions that can be evaluated. Whereas hill-climbing and
its relatives require domain-specific information (e.g.,
partial derivatives) to guide their searches, the genetic
algorithm requires only two things: (1) a means of
representing possible solutions and (2) an objective function
evaluator—a function which maps a value from the domain
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of possible solutions to a scalar value. In the simplest terms,
the genetic algorithm starts with an initial population of
individuals each representing a point in the search space of
a given function. Using an individual’s objective function
as a measure of how “fit” that individual is within its
environment, the genetic algorithm simulates nature’s
survival of the fittest, essentially forcing the evolution of an
optimal creature. This optimal creature is then the solution
to the corresponding optimization problem.

2. FUZZY KNOWLEDGE ACQUISITION PROCESS

A fuzzy knowledge acquisition framework [1], shown in
Fig 1, that accepts information from various fuzzy knowledge
sources and converts them into a single knowledge base.
Fuzzy rule set membership function and test objects
including instances and historical records may be distributed
among various sources. Knowledge from each site might be
directly obtained by a group of human experts, using
knowledge tools or delivered using machine learning
methods may easily be translated into or represented by rules.

3. RULE ENCODING PROCESS

Since all the fuzzy rule set with their membership functions
are obtained from different sources, they may differ in size,
so a variable size Rule Representation [1] corresponding to
a particular rule set with its membership function is used.
Before encoding each fuzzy rule set is translated into a
intermediary representation to preserve its semantic and
syntactic constraints. This translation process involves the
following steps:
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Fig. 1: Knowledge Acquisition Process

Assume a fuzzy rule set RS
q
 obtained from a fuzzy

knowledge source has the following four rules:

R
q1

: IF (P.L. =Short) then Iris is Setosa;

R
q2

: IF (P.L. =Long) then Iris is Virginica;

R
q3

: IF (P.W. =Medium) then Iris is Versicolor;

R
q4

: IF (P.W. =Wide) then Iris is Virgiinca;

After translation, the intermediary representation of the
rules set would be constructed as follows:

R’
q1

: IF (S.L. = Short or Medium or Long) and IF (S.W.
= Narrow or Medium or Wide) and IF (P.L. = Short) and IF
(P.W. = Narrow or Medium or Wide) then Consq is Srtosa.

R’
q2

: IF (S.L. = Short or Medium or Long) and IF (S.W.
= Narrow or Medium or Wide) and IF (P.L. = Long) and IF
(P.W. = Narrow or Medium or Wide) then Consq is Virginica

R’
q3

: IF (S.L. = Short or Medium or Long) and IF (S.W.
= Narrow or Medium or Wide) and IF (P.L. = Short or
Medium or Long) and IF (P.W. = Medium) then Consq is
Versicolor.

R’
q4

: IF (S.L. = Short or Medium or Long) and IF (S.W.
= Narrow or Medium or Wide) and IF (P.L. = Short or
Medium or Long) and IF (P.W. = Wide) then Consq is
Virginica.

The tests with underlines are Dummy tests. After
translation each intermediary rule representation then
consists of four features set and one consequent pattern. We
then concatenate all intermediary rules to form an
intermediary rule set RS’

q
. After each rule set has been

translated into intermediary representation, each
representation and membership functions are to be encoded.
We are using the encoding structure:

3.1. Collect the features and possible values occurring
in the condition parts of the fuzzy rule sets. All
features gathered together comprise the global
feature set.

3.2. Collect classes occurring in the conclusion parts
of the fuzzy rule sets. All classes gathered together
comprise global class set.

3.3. Translate each fuzzy rule into an intermediary
representation that retains its essential syntax and
semantics. If some features in the feature set are
not used by the fuzzy rule, dummy tests are inserted
into the condition part of the fuzzy rule. Each rule
in the intermediary representation thus then
composed of N feature tests and one class pattern.
Where N is number of global features collected.

3.4. Concatenate all intermediary representations of
rules to form the representation of rule set.

This intermediary representation can be well understood
with the example explained below:

There are three species of iris flowers to be
distinguished: Setosa, Versicolor, and Virginica. A class
domain D

flower
= { Setosa, Versicolor, Virginica}.Each rule

is described by four features: Sepal Length(S.L.), Sepal
Width(S.W.), Petal Length(P.L.), Petal Width(P.W.). Each
feature has a domain given below:

D
S.L

. = {Short, Medium, Low}

D
S.W.

 = {Narrow, Medium, Wide}

D
P.L.

 = {Short, Medium, Low}

D
P.W.

 = {Narrow, Medium, Wide}
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Fig. 2: Representation of a Fuzzy set RS’
q
 with its

Membership Functions

Each chromosome is divided into two parts: RS’q and
MFS

q
. RS’

q
 denotes an intermediary form of fuzzy rule set

and MFS
q
 denotes the set of membership functions

associated with RS’
q
. In Fig 2, R

qi
 represents the ith rule in

RS’
q
. Tqij is the jth test in rule R’

qi
. a

ij
 denotes the jth possible

linguistic value of feature A
i
. MF

A
 denotes the set of

membership functions for feature A
i
, and uaij denotes the

membership function of a
ij
. Each feature test Tqij is an

intermediary fuzzy rule set is then encoded into a fixed
length binary substring sqij1………..sqijm, where m

j
 is the

number of possible values for A
i
. For example, assume the

set of possible linguistic for feature A
j
 is {a

j1
, a

j2
, a

j3
}. Three

bits are then used to represent this feature. The conclusion
pattern in each rule is encoded as a bit string (

1
,

2
 …

x
) where

x is the number of possible conclusions. When the rule
concludes to l, then F

l
is set as one and other as zero. N

features tests and one conclusion pattern are then encoded
and concatenated as a fixed length rule substring. All rules
set substring are then concatenated to represent a variable
length rule set string since each rule set differs in size.

For the above said example, the fuzzy rule R’q
1
 is

encoded as:

S.L. S.W. P.L. P.W.  Conseq

R’
q1

: 111 111 100 111 1001

Fig. 3: Bit-string representation of R’
q1

Since feature S.L. in R’
q1

 has three disjunctive test
values, Short, Medium, Long, the test for S.L. is encoded
as “111”. S.W. also has three disjunctive test values, Narrow,
Medium, Wide, and thus is encoded as “111”. Similarly,
P.W. is encoded as “111”. But P.L. has only one test value
Short. It is thus encoded as “100”. Since the Consequent
pattern has three possible values {Setosa, Versicolor,
Virginica}, so the consequent pattern for Setosa is “100”.

All substrings of intermediary rules are then
concatenated to represent the entire fuzzy rule set. The result
is as shown in Fig 4.

Fig 4: Bit-string Representation of RS
q

We used two parameters to encode associated
membership functions. Membership functions applied to a
fuzzy rule set are then assumed to be isosceles-triangle
functions as shown in Fig 5, where aij denotes the jth

linguistic value of feature A
i
. ua

jj
 denotes the membership

function of a
ij
, c

ij
 represents the center of abscissa of

membership function ua
ij
 and w

ij
 represents half the spread

of membership function ua
ij
.

Fig 5: Membership Function for Feature A
i

Each membership function is represented as a pair (c,
w). Thus all pairs of (c, w)’s for a certain feature are
concatenated to represent its membership functions. MF

qi

is then represented as a substring of cq
i1
 wq

i1
,…….cq

imi
 wq

imi

where mi is the number of possible linguistic values of A
i

(Fig 2). The entire set of membership functions MFS
q
 is

encoded by concatenated substrings of MF
A1

, MF
 A2

,
………MF

 AN
. Since c and w are both numeric values, MFS

q

is thus encoded as a fixed-length real-number than a bit
string. Let the membership functions for each feature in RS

q

are given in Fig 6.

Fig. 6: Membership Functions for Iris Example.

According to the given encoding scheme MFS
q
 is

represented as shown in Fig 7.

Fig. 7: String Representation of MFS
q
.
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Since feature S.L. has three linguistic values, Short,
Medium, Long, membership functions for S.L. are encoded
as (5.2, 0.9, 6.1, 0.9, 7.0, 0.9) according to Fig 6, S.W. also
has three linguistic values Narrow, Medium, Wide, and its
associated membership functions are thus encoded as (2.6,
0.6, 3.2, 0.6, 3.8, 0.6). Similarly membership function for
P.L. and P.W. are respectively, encoded as (2.4, 1.5, 3.9, 1.5,
5.4, 1.5) and (0.7, 0.6, 1.3, 0.6, 1.9, 0.6).

The fuzzy rule set RS
q
 with associated membership

function set MFS
q
 is then encoded as shown in Fig 8.

Fig. 8: String Representation of RS
q
 with its

Associated MFS
q
.

According to this representation each chromosome
consists of an intermediary fuzzy rule set and its associated
membership functions. This representation allows the
application of genetic operators to the multiple rules set with
their membership functions at the same time.

4. RULE BASE OPTIMIZATION

4.1. Proposed Genetic Algorithm

After encoding of the rules in variable length chromosomes,
a genetic algorithm is applied to optimize the number of
rules (chromosomes) within the rule base. The proposed
approach is shown in Fig 9.The various steps involved in
the approach are explained below.

4.2. Initial Population

The genetic algorithm requires a population of feasible
solutions to be initialized and updated during evaluation
process of the proposed approach, the initial population of
fuzzy rules comes from multiple knowledge sources. Each
individual in the initial population consists of certain rules
and membership functions from different knowledge
sources.

4.3. Fitness and Selection

To develop a compact rule base from an initial population,
the genetic algorithm selects parent fuzzy rules with high
Fitness values for mating. An evaluation function is a set of
test objects including the instances and historical records,
which is then used to qualify the derived rule set. The
performance of the derived rule sets their Fitness value is
fed back to the genetic algorithm to continue. Now, how

the solution space is searched to promote the quality fuzzy
rules. Two factors are used in evaluating the derived fuzzy
rule, Accuracy and Complexity which are defined below:

Accuracy (R
i
) = Total Number of objects currently

matched Ri / Total number of objects

Complexity = Number of rules into current population
/ Total number of rules in the initial population.

Then using these two functions we can determine the
Fitness function as

Fitness (R
i
) = Accuracy ( R

i
 ) / [Complexity]

Because our goal is to increase Accuracy and to
decrease the Complexity of rule base Here is a control
parameter representing a trade-off between Accuracy and
Complexity.

4.4. Genetic Operators

Genetic operators are very important to the success of a
specific genetic algorithm. Two genetic Operators: Two-
substring crossover and two-point mutation are used in the
proposed approach.

4.4.1. Two Point Crossover

T h e two-substring crossover operator used, exchanges the
substrings of the parents to generate offspring. It selects each
crossover point with a probability of 1 / L-1, where L is the
number of bits of the longest rule. The substring exchange
may result in the change of both antecedent and consequent
of the rule, so there are better chances of generation of better
rules from the crossover operator. The three points chosen
cp

rs
, c

pd
 and cp

mf
 are chosen to accomplish this task, cprs is

located in the rule-set part. And it may occur with in the
rule string or at a rule boundary. The cprs crossover points
need not be located at the same point positions for both
parent chromosomes. The only requirement for cprs is that
they must “match up syntactically” that means if one rule is
cut at rule boundary the other parent must also be cut at a
rule boundary. Similarly, if one parent is cut at a point p
bits to left of a rule boundary, then the other parent must
also be cut at a point p bits to left of some other rule
boundary. cp

d
 is always chosen at the boundary between

the rule set and membership function set. cp
mf

 is located in
the membership function part and it may occur at any
membership function center or at spreads. The cpmf
crossover points for both parent chromosomes must however
be same distances to the ends of both parent chromosomes.
The crossover operator thus produces two offspring by
exchanging the two substrings between cprs and cp

d
 and

cpmf and the end points of both parents. This is explained
in Fig 10.
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Fig. 9: Proposed Genetic Rule Base Compaction Approach
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We have assumed that two parent rule set RS
1
 and RS

2

respectively, contain k and h rules for classifying objects
with two linguistic features (A

1
 and A

2
). Features A

1
 and A

2

both have two possible linguistic values. Two classes are to
be determined. Also assume that RS

1
 and RS

2
 are encoded

with their membership functions as shown in Fig 10(a).

Fig. 10(a): String Representation of RS
1
 + MFS

1
 and

RS
2
 + MFS

2

Fig. (10b-1): RS
1
 + MFS

1
 and RS

2
 + MFS

2
before Crossover

O1: 101001……011 010….010101 5.7, 0.8, 7.0, 0.9, 1.3, 0.5, 1.5, 0.6
O2: 111001...101 001…110101 6.1, 0.9, 6.9, 1.1, 1.6, 0.7, 1.8, 0.9

Fig. (10b-2): Offsprings after Crossover of
(RS

1
 + MFS

1
) and (RS

2
 + MFS

2
)

Fig. (10b-3): RS
1
 + MFS

1
 and RS

2
 + MFS

2
before

Crossover (with different C
p
, Cd and cp

mf
 )

Crossover
O1: 101001……011 010….010101 5.7, 0.8, 6.9, 1.1, 1.6, 0.5, 1.5, 0.6

Out of sequence
O2: 111001...101 001…110101 6.1, 0.9, 7.0, 0.9, 1.3 0.7, 1.8, 0.9

Fig. (10b-4): Offsprings after Crossover of (RS
1
 + MFS

1
)

and (RS
2
 + MFS

2
)

Rearrange
O1: 101001……011 010….010101 5.7, 0.8, 6.9, 1.1, 1.5, 0.6, 1.6, 0.5

O2: 111001...101 001…110101 6.1, 0.9, 7.0, 0.9, 1.3 0.7, 1.8, 0.9

Fig. 10(b): An Example of Two-substring
Crossover Operator

Assume that third bit to the left of r
1j
 in RS

1
 as randomly

chosen as the crossover point cp
rs
1 The crossover point cp

rs2

for RS
2
 must then be the third bit to the left of certain rule

r
2j
, where j is randomly generated. Also assume a point six

units to left of the chromosome is randomly chosen as a
crossover point cpmf1. The crossover point cp

mf2
 for the

other parent must be chosen six units to the left of MFS
2
.

cp
d1

 and cp
d2

 are chosen at the boundaries between the rule
set and the membership function sets. Thus the substring
from cp

rs1
 to cp

d1
is exchanged with that substring from cp

rs2

to cp
d2

, and the substring from cp
mf1

 to cp
end1

 is exchanged
with that from cp

mf2
 to cp

end2
. The process is illustrated in

Fig 10(10b).

After offspring fuzzy rule sets and their rule sets and
their membership functions have been generated by two-
substring crossover operation, the order of a newly generated
fuzzy membership function and its neighbor may be
destroyed. These fuzzy memberships thus need
rearrangement according to their center values. An example
is explained in Fig 11. Let after crossover the order of newly
generated fuzzy membership function (1.6, 0.5) and its
neighbor (1.5, 0.6) in the offspring O1 is destroyed. The
crossover operator generates two offspring rule set O1 and
O2. The pairs (1.6, 0.5) and (1.5, 0.6) for MFA

2
 in O1 are

out of sequence. They are then rearranged in ascending order
of membership function centers to (1.5, 0.5) (1.6, 0.6).

4.4.2. Two-part Mutation

The two part mutation is used hare to create a new fuzzy
rule and a new fuzzy membership function from one
chromosome. The mutation operator in the ruleset part and
membership function part are different. Two part mutation
operator at rule set part randomly changes bit values from a
selected rule set, to escape the local-optimum traps. Two-
part mutation operator applied to the membership function
part creates new fuzzy membership function say n. Assume
that c and w represent the center and spread of membership
function. The center or spread of newly generated
membership function will be c + e or s + e by the mutation
operator. Mutation at the center of a fuzzy membership
function may disrupt the order of the resulting fuzzy
membership functions. These fuzzy membership functions
then need rearrangement according to their center values,
as shown in Fig 11.

Fig. 11: Two-part Mutation Operation

5. CONCLUSION

An optimization method for fuzzy rule base is proposed,
that can be incorporated in fuzzy expert systems. Both
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representative data and expert knowledge are included in
designing fuzzy rules, which conventionally include expert
knowledge. This approach does not require any human
intervention during the optimization phase. The time
required is thus dependent on the computer execution speed,
but not on human experts, much time can thus be saved,
since experts may be geographically dispersed, and their
discussions are usually time consuming. The proposed
approach is scalable to the increase in number of rule set.
The increasing number of rule sets may increase the validity
of the resulting knowledge base.
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