
IJITKMI Volume 7 • Number 2 • Jan– June 2014 pp. 37-41 (ISSN 0973-4414)�

���

Compendium of Software Cost and Effort Estimation
Techniques

T.M.Kiran Kumar, Dr M.A.Jayaram
Department of M.C.A, Siddaganga Institute of Technology, B.H Road, Tumkur

tmkiran@yahoo.com

ABSTRACT
In Software Cost and effort estimation is a very vital task
in the software industry. It involves in estimating the
effort and cost in terms of money to complete the project
on- time and in on- schedule. This paper gives the bird’s
eye view about the software effort estimation techniques
which will be commonly used in the software industry.
The capability to provide a good estimation on software
development effort is necessitated by the project
managers. Software effort estimation model divided into
two main categories: algorithmic and non-algorithmic.
These models too have difficulty in modelling the
inherent complex relationship between the factors to find
the good estimation. And this paper concludes that we
cannot say which particular technique is best fit for all
the situations to give an accurate estimation since cost
and effort are vague. So that we make a careful
comparison between all estimation approaches and
choose the appropriate technique for each task. It will
help us to choose which software effort estimation
techniques is best
Keywords: Effort estimation, Cost estimation, Project
fail, Accuracy, COCOMO.

1. INTRODUCTION
In the modest environment of Software Industry, the best
organization will be the one, which the capability to
develop and deliver the software product to the
customers within in the promised time frame while
staying in financial budgetary boundaries. Hence proper
estimates are the drivers which may steer to achieve the
milestones. In other words it may be said it is quiet
necessary to understand and control the cost and effort by
proper estimation for the good management, enhanced
quality and better understanding of the software project.
The estimation is based on the historic data or the past
experience. The estimating parameters are varying from
the different tasks like cost, resources, manpower,
technical equipment, time, schedule and other similarities
between the projects are the parameters of the estimation.
So the software industry is looking to produce quality
products with low costs.
 Software cost and effort estimation is a continuing
activity which starts at the initial stage and continues
through the life time of a project. Continual cost
estimation is to ensure that the spending is in line with
the budget.
In the last three decades, many quantitative software cost
Estimation models have been developed. They range
model uses data from previous projects to evaluate the
current project and derives the basic formulae from
analysis of the particular database available. An

analytical model, on the other hand, uses formulae based
on global assumptions, such as the rate at which
developer solves problems and the number of problems
available. Most cost models are based on the size
measure, such as Lines of Code and Function Points,
obtained from size estimation. The accuracy of size
estimation directly impacts the accuracy of cost
estimation. But none of the above leads to an accurate
estimate.

2. RELATED WORK
Software project failures have been an vital subject in the
last decade. Software projects usually don’t fail during
the implementation and most project fails are related to
the planning and estimation steps. Despite going to over
time and cost, approximately between 30% and 40% of
the software projects are completed and the others fail
(Molokken and Jorgenson, 2003). The Standish group‘s
CHAOS reports failure rate of 70% for the software
projects(Glass, 2006). Also the cost overrun has been
indicated 189% in 1994 CHAOS report (Jorgensen and
Molokken-Ostvold, 2006). Glass (2006) claims the
reported results do not depict the real failures rate and are
pessimistic. In addition, Jorgensen and Moløkken-
Ostvold, (2006) indicate that the CHAOS report may be
corrupted. Nevertheless the mentioned statistics show the
deep crisis related to the future of the software projects.
(Glass, 2006; Jorgensen and Molokken-Ostvold, 2006).
During the last decade several studies have been done in
term of finding the reason of the software projects
failure. Galorath and Evans (2006) performed an
intensive search between 2100 internet sites and found
5000 reasons for the software project failures. Among the
found reasons, insufficient requirements engineering,
poor planning the project, suddenly decisions at the early
stages of the project and inaccurate estimations were the
most important reasons. The other researches regarding
the reason of project fails show that inaccurate estimation
is the root factor of fail in the most software project fails
(Jones, 2007; Jorgensen, 2005; Kemerer, 1987;
Moløkken and Jorgensen, 2003).Despite the indicated
statistics may be pessimistic, inaccurate estimation is a
real problem in the software production’s world which
should be solved. Presenting the efficient techniques and
reliable models seems required regarding the mentioned
problem. The conditions of the software projects are not
stable and the state is continuously changing so several
methods should be presented for estimation that each
method is appropriate for a special project.

IJITKMI Volume 7 • Number 2 • Jan– June 2014 pp. 37-41 (ISSN 0973-4414)�

���

3. ESTIMATION TECHNIQUES
Predominantly there are many methods for software cost
estimation, which are divided into two groups:
Algorithmic and Non-algorithmic. Both groups are
required for performing the accurate estimation. If the
needs of the project are known better, their performance
will be better. In this section, we would like to discuss
some popular estimation techniques which will be used
in the software industry.

Algorithmic Models
These models work based on the especial algorithm.
They usually need data at first and make results by using
the mathematical relations. Nowadays, many software
estimation methods use these models. Algorithmic
Models are classified into some different models. Each
algorithmic model uses an equation to do the estimation:

Effort = f(x1, x2… xn) (1)

Where, (x1…xn) is the vector of the cost factors. The
Differences among the existing algorithmic methods are
related to choosing the cost factors and function. All cost
factors using in these models are:

• Product factors: required reliability; product

complexity; database size used; required
reusability; documentation match to life-cycle
needs;

• Computer factors: execution time constraint;

main storage constraint; computer turnaround
constraints; platform volatility;

• Personnel factors: analyst capability; application

experience; programming capability; platform
experience; language and tool experience;
personnel continuity;

• Project factors: multisite development; use of

software tool; required development schedule.

Quantizing the mentioned factors is very
difficult to do and some of them are ignored in some
software projects. In this study several algorithmic
methods are considered as the most popular methods.
The mentioned methods have been selected based on
their reputation. There are many papers which use the
selected algorithmic methods (Musilek, Pedrycz et al.
2002; Yahya, Ahmad et al. 2008; Lavazza and
Garavaglia 2009; Yinhuan, Beizhan et al. 2009; Sikka,
Kaur et al. 2010)

3.1 Source Line of Code

SLOC is an estimation parameter that illustrates
the number of all commands and data definition but it
does not include instructions such as comments, blanks,
and continuation lines. This parameter is usually used as
an analogy based on an approach for the estimation.
After computing the SLOC for software, its amount is

compared with other projects which their SLOC has been
computed before, and the size of project is estimated.
SLOC measures the size of project easily. After
completing the project, all estimations are compared with
the actual ones.

Thousand Lines of Code (KSLOC) are used for
estimation in large scale. Using this metric is common in
many estimation methods. SLOC Measuring seems very
difficult at the early stages of the project because of the
lack of information about requirements.

Since SLOC is computed based on language instructions,
comparing the size of software which use different
languages is too hard. Anyway, SLOC is the base of the
estimation models in many complicated software
estimation methods. SLOC usually is computed by
considering SL as the lowest, SH as the highest and SM
as the most probable size (Roger S. Pressman, 2005).

 (2)

3.2 Function Point Size Estimates
At first, Albrecht (1983) presented Function Point metric
to measure the functionality of project. In this method,
estimation is done by determination of below indicators:

• User Inputs,
• User Outputs,
• Logic files,
• Inquiries,
• Interfaces

A Complexity Degree which is between 1 and 3 is
defined for each indicator. 1, 2 and 3 stand for simple,
medium and complex degree respectively. Also, it is
necessary to define a weight for each indicator which can
be between 3 and 15.
At first, the number of each mentioned indicator should
be tallied and then complexity degree and weight are
multiplied by each other. Generally, the unadjusted
function point count is defined as below:

Where Nij is the number of indicator i with complexity j
and; Wij is the weight of indicator i with complexity j.
According to the previous experiences, function point
could be useful for software estimations because it could
be computed based on requirement specification in the
early stages of project. To compute the FP, UFC should
be multiplied by a Technical Complexity Factor (TCF)
which is obtained from the components in Table I.

IJITKMI Volume 7 • Number 2 • Jan– June 2014 pp. 37-41 (ISSN 0973-4414)�

���

TABLE I Technical Complexity Factor components

Each component can change from 0 to 5. 0 and 5 indicate
that the component has no effect on the project and the
component is compulsory and very important
respectively. Finally, the TCF is calculated as:
TCF = 0.65+0.01(SUM (Fi) (4)

The range of TCF is between 0.65 (if all Fi are 0) and
1.35 (if all Fi are 5). Ultimately, Function Point is
computed as:
FP=UFC*TCF (5)

3.3 Seer-Sem
SEER-SEM model has been proposed in 1980 by
Galorath Inc (Galorath, 2006). Most parameters in this
method are commercial and, business projects usually
use SEER-SEM as their main estimation method.
Software size is a key input to any estimating model and
across most software parametric models. Supported
sizing metrics include source lines of code (SLOC),
function points, function-based sizing (FBS) and a range
of other measures. They are translated for internal use
into effective size (Se). Se is a form of common currency
within the model and enables new, reused, and even
commercial off-the-shelf code to be mixed for an
integrated analysis of the software development process.

The generic calculation for Se is

Se=Newsize+ExistingSize(0.4Redesign+0.25reimp+0.35
Retest) (6)

After computing the Se the estimated effort is calculated
as below

Where D is relevant to the staffing aspects; it is
determined based on the complexity degree in staffs
structure. Cte is computed according to productivity and
efficiency of the project method is used widely in
commercial projects. (Fischman,L.This ,2005)

3.4 COCOMO
The COCOMO cost estimation model is used by
thousands of software project managers, and is based on
a study of hundreds of software projects. Unlike other
cost estimation models, COCOMO is an open model, so
all of the details are published
COCOMO-II is the latest version of COCOMO that
predicts the amount of effort based on Person-Month
(PM) in the software projects. It uses function point or
line of code as the size metrics, Effort Multipliers and
scale factors . Some rating levels are defined for scale
factors including very low, low, nominal, high, very high
and extra high. A quantitative value is assigned to each
rating level as its weight.
COCOMO II has some special features, which
distinguish it from other ones. The Usage of this method
is very wide and its results usually are accurate.

 3.5 Putman’s model
This model has been proposed by Putman according to
manpower distribution and the examination of many
software projects (Kemerer,2008). The main equation for
Putnam’s model is:

where, E is the environment indicator and demonstrates
the environment ability. Td is the time of delivery. Effort
and S are expressed by person-year and line of code
respectively. Putnam presented another formula for
Effort as follows:

where, D0 , the manpower build-up factor.

4. Non Algorithmic Methods
Contrary to the Algorithmic methods, this group are
based on analytical comparisons and inferences. For
using the Non Algorithmic methods some information
about the previous projects which are similar the under
estimate project is required and usually estimation
process in these methods is done according to the
analysis of the previous datasets.

4.1 Estimation by Analogy
So what is analogy? Analogy is a basic human reasoning
process used by almost every individual on a daily basis
to solve problems based upon similar events that
happened in the past. Of course analogy is not a new
reasoning paradigm as it has been extensively studied
and discussed by philosophers and scientists for
thousands of years.
In this method, several similar completed software
projects are noticed and estimation of cost and effort are
compared to their actual cost and effort. By assessing the
results of previous actual projects, we can estimate the
cost and effort of a similar project. The steps of this
method are considered as:

F1 Reliable back-up and
recovery

F8 Data
communications

F2 Distributed functions F9 Performance
F3 Heavily used

configuration
F10 Online data entry

F4 Operational ease F11 Online update
F5 Complex interface F12 Complex

processing
F6 Reusability F13 Installation ease
F7 Multiple sites F14 Facilitate change

IJITKMI Volume 7 • Number 2 • Jan– June 2014 pp. 37-41 (ISSN 0973-4414)�

���

1. Choosing of analogy
2. Investigating similarities and differences
3. Examining of analogy quality
4. Providing the estimation

4.2 Expert judgment

Estimation based on Expert judgment is done by
getting advices from experts who have extensive
experiences in similar projects. This method is usually
used when there is limitation in finding data and
gathering requirements. Consultation is the basic issue in
this method. One of the most common methods which
work according to this technique is Delphi. Delphi
arranges an especial meeting among the project experts
and tries to achieve the true information about the project
from their debates. Delphi includes some steps:

1. Coordinator gives an estimation form to each
expert.

2. Each expert presents his own estimation
(without discussing with others)

3. Coordinator gathers all forms and sums up them
(including mean or median) on a form and tells
the experts to start new iteration.

4. Steps (ii-iii) are repeated until an approval is
gained.

4.3 Machine learning Models
Most techniques about software cost estimation use
statistical methods, which are not able to present reason
and strong results. Machine learning approaches could be
appropriate at this filed because they can increase the
accuracy of estimation by training rules of estimation and
repeating the run cycles. Machine learning methods
could be categorized into two main methods, which are
explained in the next subsections.

a) Neural networks
Neural networks include several layers which each layer
is composed of several elements called neuron. Neurons,
by investigating the weights defined for inputs, produce
the outputs. Outputs will be the actual effort, which is the
main goal of estimation. Back propagation neural
network is the best selection for software estimation
problem because it adjusts the weights by comparing the
network outputs and actual results. In addition, training is
done effectively. Majority of researches on using the
neural networks for software cost estimation.

b) Fuzzy Method
All systems, which work based on the fuzzy logic try to
simulate human behaviour and reasoning. In many
problems, which decision making is very difficult and
conditions are vague, fuzzy systems are an efficient tool
in such situations. This technique always supports the
facts that may be ignored. There are four stages in the
fuzzy approach:
Stage 1: Fuzzification: to produce trapezoidal numbers
for the linguistic terms.

Stage 2: Develop the complexity matrix by producing a
new linguistic term.
Stage 3: Determine the productivity rate and the attempt
for the new linguistic terms.
Stage 4: Defuzzification: to determine the effort required
to complete a task and to compare the existing method.

TABLE I1 Comparison of the existing methods

Meth

od
Type Advantages Disadvantages

COC
OMO

Algorith
mic

Clear results,
very common

Much data is
required, It ‘s not
suitable for any

project,

Meth
od

Type Advantages Disadvantages

Exper
t

Judg
ment

Non-
Algorith

mic

Fast
prediction,
Adapt to
especial
projects

Its success depend
on expert, Usually
is done incomplete

Functi
on

Point

Algorith
mic

Language
free, Its

results are
better than

SLOC

Mechanization is
hard to do , quality
of output are not

considered

Analo
gy

Non-
Algorith

mic

Works based
on actual

experiences,
having

especial
expert is not

important

A lots of
information about

past projects is
required, In some

situations there are
no similar project

Neura
l

Netw
orks

Non-
Algorith

mic

Consistent
with unlike
databases,
Power of
reasoning

There is no
guideline for

designing, The
performance

depends on large
training data

Fuzzy Non-
Algorith

mic

Training is
not required,
Flexibility

Hard to use,
Maintaining the

degree of
meaningfulness is

difficult

IV. CONCLUSION
The key factor for the software project failures has been
the subject of many researches over a decade. According
to the outcomes of several researches, the root cause for
software project failures is inaccurate estimation in early
stages of the project. So introducing and focusing on the
estimation methods seems necessary for achieving to the
accurate and reliable estimations. Since software project
managers are used to select the good estimation
technique based on the conditions and status of the
project, describing and comprising of the project failures.
There is no estimation method which can be present the
best estimates in all various situations and each technique

IJITKMI Volume 7 • Number 2 • Jan– June 2014 pp. 37-41 (ISSN 0973-4414)�

���

can be suitable in the special project. It is necessary
understanding the principals of each estimation method
to choose the best. Because performance of each
estimation method depends on several parameters such as
complexity of the project , duration of the project,
expertise of the staff, development method and so on.
Some evaluation metrics and an actual estimation
example we have been presented in this paper. Making to
improve the performance of the existing techniques and
focusing the new methods for estimation based on
today’s software project requirements can be the future
works in this area.

REFERENCES
Albrecht.A.J. and J. E. Gaffney, “Software function, source lines of
codes, and development effort prediction: a software science
validation”, IEEE Trans Software Eng. SE,pp.639-648, 1983.

 M. E. Porter, Competitive Advantage: Creating and Sustaining
Superior Performance, Free Press, NY, 1998.

 R. J. Offen and R. Jeffery, "Establishing Software Measurement
Programs," IEEE Software, vol. 14, 2, pp. 45-53,1997.

 R. Agarwal, Manish Kumar , Yogesh, S. Mallick, RM. Bharadwaj, D.
Anantwar Infosys Technologies Limited, Calcutta, India, “Estimating
software projects”, ACM SIGSOFT Software Engineering Notes
Volume 26, Issue 4 (July 2001), Pages: 60 – 67

 Barry Boehm, Chris Abts and Sunita Chulani University of Southern
California, Los Angeles, USA, IBM Research, ” Software development
cost estimation approaches –A survey”. Annals of Software
Engineering volume 10, issue 1-4 (2000) pages 177–205, Year of
publication: 2000 ISSN: 1022-7091

 Hareton Leung, Zhang Fan, “Software Cost estimation”, Hong Kong
Polytechnic University, 2002

C. Ravindranath Pandian, Software Metrics A Guide to planning,
Analysis and Application, India, 2004

 A. Albrecht, “Measuring Application Development Productivity”, in
Proceedings of Joint SHARE/GUIDE/IBM Application Development
Symposium, October 1979.

 A. Abran, P.N. Robillard, “Function point analysis: an empirical study
of its measurement process,” IEEE Trans. Software Eng., vol. 22, 1996,
pp.895-909.

Swapna Kishore, Rajesh Naik, “Software Requirements And
Estimation”, McGraw-Hill, India, 2005

Roger S. Pressman, “Software Engineering, A Practitioner’s Approach”
Sixth Edition, McGraw-Hill, NY, 2005.

C. Jones, Applied Software Measurement, Assuring Productivity and
Quality, McGraw-Hill, 1997.

 S.A.Whitmire,“3D function points” scientific and real-time extensions
to function points,” in Proceedings of the 1992 Pacific Northwest
Software Quality Conference, 1992.

C.R. Symons, “Function point analysis: difficulties and improvements”
IEEE Trans. Software Eng., vol. 14, no.1, 1988, pp. 2-11.

Symons, “Software Sizing and Estimating – Mark II FPA,” Symons C.,
John Wiley and Sons, U.K., ISBN 0-471-92985-9, 1991.

 Desharnais, J.-M.; St-Pierre, D. Maya, M. Abran, A. “Full Function
Points: Counting Practices Manual - Rules and Procedures”, Montréal,
Université du Québec à Montréal , 1997.

 C.R. Symons and P.G. Rule, “One size fits all- COSMIC aims, design
principles and progress”, in Proceedings of 10th Conference on
European Software Control and Metrics, 1999, pp. 197-207.

 B. W. Boehm, Software engineering economics, Englewood Cliffs, NJ:
Prentice-Hall, 1981.

 B.W. Boehm et al "The COCOMO 2.0 Software Cost Estimation
Model", American Programmer, July 1996,

 Robert T. Futrell, Donald F. Shafer, Linda I. Shafer, “Quality Software
Project Management”, Software Quality Institute Series, 2004

Ian Sommerville, “Software Engineering, 8th edition”, 2009

 L. H. Putnam, “A general empirical solution to the macro software
sizing and estimating problem”, IEEE Trans. Soft. Eng., July 1978, pp.
345-361.

 Watts Humphrey, A Discipline for Software Engineering,Addison
Wesley, 1995

 Prasad Reddy, (2010), “Particle Swarm Optimization in the fine-tuning
of Fuzzy Software Cost Estimation Models, International Journal of
Software Engineering (IJSE), Volume (1): Issue (1), pp 12-23.

 Prasad Reddy P.V.G.D, Sudha K.R, Rama Sree P and Ramesh
S.N.S.V.S.C, (2010), “Software Effort Estimation using Radial Basis
and Generalized Regression Neural Networks”, Journal of Computing,
Volume 2, Issue 5, pp 87-92.

 Razaz, M. and King, J. (2004) ”Introduction to Fuzzy Logic”
Information Systems - Signal and Image ProcessingGroup.
http://www.sys.uea.ac.uk/king/restricted/boards/

 S. Kumar, B. A. Krishna, and P. S. Satsangi, (1994), “Fuzzy systems
and neural networks” in software engineering project management,
Journal of Applied Intelligence, no. 4, pp. 31-52.

 Sun-Jen Huang and Nan-Hsing Chiu, (2007), "Applying fuzzy neural
network to estimate software development effort", journal of Applied
Intelligence. Vol 30 Issue 2, pp.73-83

 Urkola Leire , Dolado J. Javier , Fernandez Luis and Otero M. Carmen
, (2002), "Software Effort Estimation: the Elusive Goal in Project
Management", International Conference on Enterprise Information
Systems.

 X. Huang, J. Ren and L.F. Capretz, (2004), “A Neuro-Fuzzy. Tool for
Software Estimation”, Proceedings of the 20th IEEE International
Conference on Software Maintenance, pp. 520.

 Xu, Z. and Khoshgoftaar, T. M., (2003), “Identification of fuzzy
models of software cost estimation”.

