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Abstract 
The ability to distribute cryptographic keys has been a 
challenge for centuries. The Diffie-Hellman was the first 
practical solution to the problem. Diffie-Hellman is 
designed to provide two systems to share a secret key that 
can be used later. However, if the key exchange takes 
place in certain mathematical environment a very serious 
problem may occur during key exchange that problem is 
called Man-in-Middle Attack problem. This paper is an 
effort to solve this serious problem in Diffie-Hellman key 
exchange so that the algorithm can be made secure. In 
this paper we have used RSA algorithm along with 
Diffie-Hellman to solve the problem. We explore the 
Man-in-Middle attack, analyse the countermeasures 
against the attack. 
Index Terms: Cryptography, Diffie-Hellman, Man-in-
Middle attack, primality testing, discrete logarithm. 
 
Introduction 
Cryptography and encryption/decryption methods fall 
into two main Categories: symmetric and public key. In 
symmetric cryptography, sometimes called classical 
cryptography, parties share the same 
encryption/decryption key. Therefore, before using a 
symmetric cryptography system, the users must somehow 
come to an agreement on a key to use. An obvious 
problem arises when the parties are separated by large 
distances which is commonplace in today’s worldwide 
digital communications. If the parties did not meet prior 
to their separation, how do they agree on the common key 
to use in their cryptosystem without a secure channel? 
They could send a trusted courier to exchange keys, but 
that is not feasible, if time is a critical factor in their 
communication. 
The problem of securely distributing keys used in 
symmetric ciphers has challenged cryptographers for 
hundreds of years. If an unauthorized user gain access to 
the key, the cryptographic communication must be 
considered broken. Amazingly, in 1977, Whitfield Diffie 
and Martin Hellman published a paper in which they 
presented a key exchange protocol that provided the first 
practical solution to this dilemma. The protocol, named 
the Diffie-Hellman key exchange(or key agreement) 
protocol in their honour, allows two parties to derive a 
common secret key by communications over an 
unsecured channel, while sharing no secret keying 
material at prior .  
Before conducting the key exchange using the Diffie-
Hellman protocol, the parties must agree on a prime 

number that defines the mathematical environment in 
which the key exchange will take place. If the prime 
number is large enough, a brute force attack to find the 
secret key becomes infeasible. However, if the two parties 
agree on certain prime numbers, an active adversary can 
compromise their communication. 
This paper investigates the Diffie-Hellman protocol and 
the difficulty of the discrete logarithm problem the 
protocol relies on. We then analyse the man-in-middle 
attack described above by developing an algorithm to 
conduct the attack. We then consider methods to defend 
against the attack and demonstrate their effectiveness.  
 
BACKGROUND AND REVIEW 
Before beginning a discussion of the Diffie-Hellman 
protocol and the man-in-middle attack, we investigate and 
present some basic definitions and theorems. This 
information is available in any standard algebra text, such 
as Fraleigh’s Abstract Algebra, or discrete mathematics 
text, such as Rosen’s Discrete Mathematics and Its 
Applications. It is assumed the reader is familiar with 
common mathematical, logical, and set notation. 
 
NUMBER THEORY 
If a and b are integers, then a is congruent to b modulo m 
if m divides a -b. We use the notation a �b (modm) to 
indicate that a is congruent to b modulo m. 
The great French mathematician Pierre de Fermat (1601–
1655)demonstrated that the congruencea p-1=1 (mod 
p)holds when p is a prime, and this gives us a theorem 
that will prove crucial in our analysis of the man-in-the-
middle attack. 
Fermat’s Theorem: If a � Z and p is a prime not dividing 
a, then p divides ap-1, that is,  
  ap-1

�1 (mod p) 
Euler gave a generalization of Fermat’s theorem, but we 
must first define Euler’s Totient Function. Commonly 
referred to as Euler’s Phi Function, the function gives the 
number of integers less than or equal to n which are 
relatively prime to n , and is denoted by �(n). It is not 
hard to show that, if 
      k 
n=� Pi

�i     ,then 

       i=1 

              k 
�(n)=n �Pi

�i (1-1/Pi) 
                                        i=1 

Euler’s Theorem: If a � Z and is relatively prime to n, 
then a�(n)- 1isdivisible by n, that is, 
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a�(n)
�1 (mod n). 

 
GROUP THEORY 
A group <G,*>is a set G which is closed under a binary 
operation *, such that the following conditions are 
satisfied: 
 
Associativity: For all a,b,c � G a*(b*c)=(a*b)*c 
Identity: There is an element e in G such that for all a � Z 
 a*e=e*a=a 
Inverse: Corresponding to each a � G, there exist an 
element a’ such that 
 a*a’=a’*a=e 
 

If the set G has a finite number ofelements. In this case, 
the number of elements is called the order of G, denoted 
by |G |. 
If n is a prime p, then the set Z*p=Zp-{[0]p}forms a group 
under multiplication modulo n . The Diffie-Hellman key 
exchange protocol sets this group as the environment for 
the key agreement. 
 
Sub Group 
Let G be a group and H be its subset. The subset H is 
called subgroup of G if following conditions are satisfied. 
1. if a, b � H, the product ab also belongs to H. 
2. e(identity element of G) belongs to H. 
3.if a � H its inverse also belongs to H. 

 
• 1 2 3 4 

1 1 2 3 4 

2 2 4 1 3 

3 3 1 4 2 

4 4 3 2 1 

 
Table 4. Group Table for <Z*p, •> 

 
The group <Z*p, •>is always cyclic. An important 
property of cyclic groups is that every subgroup of a 
cyclic group is also cyclic. Another important property 
of groups in general is the Theorem of Lagrange. 
 
Lagrange’s Theorem: Let H be a subgroup of a finite 
group G. 
Then the order of H is a divisor of the order of G. 
 
Groups of Prime Order 
A group g is called a group of prime order if it is: 
1. a cyclic group having a prime number as its order. 
2. isomorphic to the quotient of group of integers by a 
subgroup generated by a         prime. 
3. a simple abelian group. 
4. adittive group of finite prime field. 
 
The number of distinct subgroups of a group are either 
0 or congruent to 1(mod p). 
Let G be a group and H, K be its subgroups each of 
order p, where p is a prime then, 
H�K = {e} or H=K. 
 
Field Theory 
A field <F, +, .>, is a set F together with two binary 
operations, which we 
will call addition and multiplication, defined on F such 
that the following axioms are satisfied: 
 
Addition: <F, +>is an abelian group. 
Multiplication: <F*, .>is an abelian group. 
Distributive: For all a,b, c � F , a . (b + c) = (a .b) + (a 
. c) . 

 
A field F is said to be a finite field, if the set F has a 
finite number of elements. 
If F is a finite field, then the multiplicative group is 
cyclic. 
 
 
PRIMALITY TESTING 
A primality test is an algorithm used for determining 
whether an input number is prime. Primality tests can 
be divided into two main groups: deterministic and 
probabilistic. Deterministic primality tests prove with 
certainty whether a number is prime or composite. 
Probabilistic primality tests tell us a number is 
composite or probably prime. 
 
Miller-Rabin Primality Test 
The Miller-Rabin Primality Test is an efficient 
probabilistic algorithmto test for primality based on the 
idea of strong pseudoprimes. Consider an odd 
composite number n and n -1 =d .2swith d odd. n is a 
strong pseudoprime if either  
ad
�1 (mod n) or ad.2r

�-1(mod n) with r =0,1,...s -1. The 
Carmichael numbers are Fermat pseudoprimes for 
every base. However, a composite number can only be 
a strong pseudoprime to at most one quarter of all 
bases. 
 
The algorithm is as follows: 
Choose a random integer a�[2, n -2]. If ad

�1 (mod n) 
andad.2r

�-1(mod n) for all 
r =0,1,...s -1, then a is called a witness and n is 
composite. Otherwise, n is a strong probable prime to 
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base a.If n >9 and is odd composite, the probability that 
the algorithm will fail to produce a witness for n is <1/ 
4. The probability that we fail to find a witness after k 
iterations is <1/ 4k. We can make this probability as 
small as we desire with a large number of iterations. For 
instance, if we wanted to ensure the probability of 
calling a composite number a prime is less than 10-6, we 
must compute 10 iterations or more. 
The Miller-Rabin test is very fast and has a complexity 
ofO((log n)3). Of course, because it is probabilistic, 
there is a chance of the test returning a number as prime 
when it is in fact composite. The Miller-Rabintest offers 
us both speed, as compared to other primality tests, and 
the ability to control the probability of error and will be 
our tool of choice. 
 
DIFFIE-HELLMAN PROTOCOL 
 
The parameters of the protocol are: p, a large prime and 
g, a primitive element of Zn. This means that all 
numbers n=1, ... , p-1 can be represented as n = gi. 
These two numbers do not need to be kept secret. For 
example, Alice could send them to Bob in the open. 
The protocol runs as follows: 
 
1. Alice choses a large random integer x and 
sends Bob  
X=gx mod p 
2. Bob choses a large random integer y and sends 
Alice  
Y=gy mod p 
3. Alice computes  
k=Yx mod p 
4. Bob computes  
k=Xy mod p 
k is the key. k is equal to gxy mod p. 

Both Alice and Bob have arrived at the same value, 
because (ga)b and (gb)a are equal mod p. Note that only 
a, b, and (gab mod p = gba mod p) are kept secret. All 
the other values – p, g, ga mod p, and gb mod p – are 
sent in the clear. Once Alice and Bob compute the 
shared secret they can use it as an encryption key, 
known only to them, for sending messages across the 
same open communications channel. 

 
Example 1.1 
A simple example of Diffie-Hellman Key Exchange 
Protocol is as follows: 

1. Alice and Bob agree to use a prime number p 
= 23 and base g = 5. 
2. Alice chooses a secret integer a = 6, then sends 
Bob A = ga mod p 
o A = 56 mod 23 = 8 
3. Bob chooses a secret integer b = 15, then sends 
Alice B = gb mod p 
o B = 515 mod 23 = 19 
4. Alice computes s = Ba mod p 

o s = 196 mod 23 = 2 
5. Bob computes s = Ab mod p 
o s = 815 mod 23 = 2 
6. Alice and Bob now share a secret (the number 
2). 

RSA Algorithm 

The most famous of the public key cryptosystem is 
RSA which is named after its three developers Ron 
Rivest, Adi Shamir, and Leonard Adleman. The RSA 
cryptosystem is a public-key cryptosystem, widely used 
for secure communication and e-commerce 
applications. It is often used to encrypt messages sent 
between two communicating parties so that an 
eavesdropper who overhears the conversation cannot 
decode them easily. It also enables a party to append an 
unforgeable signature to the end of a message. This 
signature cannot be easily forged and can be checked by 
anyone. 
The basic RSA cryptosystem is completely specified by 
the following sequence of steps. 
 
1. Alice selects at random two large primes p and 
q. 
2. Alice computes n = pq. 
3. Alice selects a small odd integer e that is 
relatively prime to 
 (p − 1)(q − 1). 
4. Alice sets d so that de mod (p − 1)(q − 1) 
equals 1. 
5. Alice publish the pair (e, n) as the public key, 
with PA(M) = Me mod n. 
6. Alice stores the pair (d, n) as the secret key, 
with SA(E) = Ed mod n. 
 
In order to send message M in {0, 1, . . . , n−1}, Bob 
sends PA(M) = Me mod n. On receiving the encrypted 
message Alice computes SA(PA(M)) = Mde mod n. Our 
choices of d, e, and n ensure that Mde mod n equals M. 
 
THE DISCRETE LOGARITHM 
Eve can have more information than just the fact that 
the key resides in the interval  
(1, p -1). Because the exchange occurs over an open 
channel, Eve knows �x and �y as well. If � � �x(mod p) 
and � � �y(mod p), then p ,� ,� and � are known. All 
Eve has to do is solve �x

� � (mod p)for x or �y
�� (mod 

p) for y. Once x or y are known, Eve simply raises �x to 
y or �y to x and arrives at the secret key K . However, if 
p is large, solving �x

� �(mod p) for x in general is 
considered difficult. The problem of finding x if �x is 
known as the discrete logarithm problem (DLP), often 
abbreviated x=L�(�). 
 
 
Diffie-Hellman Problem 
The Diffie-Hellman Problem is of two types, the 
computational and the decisional. The Computational 
Diffie-Hellman Problem is defined as follows: Let p be 
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a prime and let � be a primitive root mod p . Given 
�

x(mod p) and �y(mod p)  , find �xy
�  �(mod p)  . Recall 

that Eve has access to both �x and �y as they are both 
made public during the exchange. It is not currently 
known whether or not this problem is easier than 
computing discrete logs A related problem, known as 
the Decisional Diffie-Hellman Problem, is defined as 
follows: Let p be a prime and let be a primitive root 
mod p . Given �x(mod p) and �y(mod p), and � �  0 
(mod p) , decide whether or not K � �xy(mod p). In 

other words, if someone offers a number to Eve and 
claims it is K, can Eve decide whether or not that 
person is telling the truth with the information captured 
in the open channel? 
  Solving these problems Eve can 
attack the Diffie-Hellman Key Exchange protocol. It 
may either pretend to be sender or it may alter the 
messages between the two clients also, it may simply 
hear to the conversation and compromise the privacy of 
the communication. 

 
 

Bits Digits(approximate) PC Time 
(approximate) 

SC Time 
(approximate) 

64 19 317,098 years 115 days 

128 39 3 x 10^(25) years 3 x 10^(19) years 

256 77 3 x 10^(63) years 3 x 10^(57) years 

512 154 3 x 10^(140) 
years 

3 x 10^(134) 
years 

1024 308 3 x 10^(294) 
years 

3 x 10^(288) 
years 

2048 616 3 x 10^(602) 
years 

3 x 10^(596) 
years 

 
Table 2. Times to Exhaust Key Space 

 
 
MAN-IN-THE-MIDDLE ATTACK 
 
THEORY BEHIND THE ATTACK 
Wiener and Van Orschot noted that, if certain primes 
are used, a potentially fatal protocol attack on the 
Diffie-Hellman key exchange protocol becomes 
possible. The idea is based on forcing the parties to 
agree on a shared key that resides in a subgroup of the 
cyclic group Z*p. If the order of the subgroup is small 
enough, an adversary can exhaustively search the 
subgroup, retrieve the secret key, and eavesdrop on the 
communication of Alice and Bob. 
For instance, consider the case when the prime used for 
the key exchange is of the form p =2q +1 , where q is a 
prime. Then, �q=�(p-1)/2. 
We now generalize the situation if Alice and Bob use a 
prime number of the form 
p =Rq +1, where R is a small integer and q is again a 
large prime. 
 
Claim: �(p-1)/Ris an element of order R. 
Proof: Raising �(p-1)/Rto consecutive powers, starting 
with 0, we get: 
(�(p-1)/R)=1, (�(p-1)/R)2, (�(p-1)/R)3, …. , (�(p-1)/R)= �p-1=1 
This produces a list of R different values. Continuing 
after R , 
(�(p-1)/R)(R+1)=(�(p-1)/R)R. (�(p-1)/R)=1.(�(p-1)/R), 
(�(p-1)/R)(R+2)=(�(p-1)/R)R. (�(p-1)/R)2=1. (�(p-1)/R)2, ……. , 
(�(p-1)/R)(R+n)= (�(p-1)/R)R. (�(p-1)/R)n=1.(�(p-1)/R)n  
 

For n <R , the results are in the original list. 
For n �R , we can write R +n =R +kR +m with 0 �m� R 
-1 and m, k �Z. 
(�(p-1)/R)(R+n)= (�(p-1)/R)(R+kR+m)= (�(p-1)/R)R. (�(p-1)/R)kR. (�(p-

1)/R)m= 
1.1k. (�(p-1)/R)m=(�(p-1)/R)m 
Because 0 	 m	 R -1, this is in our original list and �(p-

1)/Ris of order R . 
  So, if the prime Alice and Bob agree 
to use is of the form p =Rq +1, Evecan force them to 
agree on a key in a subgroup of Z*pof order R by 
replacing �xand �y with (�x)qand (�y)q. Even if Alice and 
Bob are vigilant, the key can take any of R values and 
the generalized attack poses a significant threat to an 
unauthenticated key exchange using the Diffie-Hellman 
protocol. 
 
 
COUNTERMEASURES AGAINST THE ATTACK 
To prevent this potentially fatal protocol attack, several 
options can be chosen. The easy and efficient method is 
to force authentication prior to the key exchange. 
 
 
Authentication 
The attack we have discussed is not the only man-in-
the-middle attack Diffie -Hellman is vulnerable to. To 
combat this attack, a variation of Diffie-Hellman that 
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ensures authentication can be used. Diffie-Hellman 
protocol that allows the establishment of a shared secret 
key between two parties with mutual authentication. 
The method employs digital signatures. A digital 
signature of a message is a number dependent on some 
secret known only to the signer; and, additionally, on 
the content of the message being signed. The STS 
protocol is frequently employed with the RSA signature 
scheme. 
To employ an RSA signature scheme, public and 
private key pairs must first be generated. 
 
RSA signature scheme key generation steps: 
1. Generate two large distinct random primes p and q, 
each roughly of  the same size 
2. Compute n =pq and �=( p -1)(q -1) 
3. Select a random integer e,1<e <�, such that gcd(e,�) 
=1 
4. Use the extended Euclidean algorithm to compute the 
unique integer d,1 <d < �such that ed =1 (mod �) 
5. The user’s public key is (n, e) and the user’s private 
key is d 
 
It is important to note that each user should generate a 
public and private key 
 let E denote a symmetric encryption 
algorithm, and SA(m)denote Alice’s signature on m, the 
protocol is as follows 
 
Set up: 
a. A prime number p and generator �of Z*p(2 � � � p-
2)are selected and published 
b. Alice selects RSA public and private signature keys 
,(nA,eA)and dA(Bob selects analogous keys). Assume 
each party has access to authentic copies of the other’s 
public key. 
 
Actions: 
a. Alice generates a secret random x,1 	x 	p -2,encrypts 
the message with its signatures and sends toBob 
ESA(axmodp). 
A�B : ESA(axmodp). 
b.Bob decryptes message using public key of Alice. 
c. Bob generates a secret random y,1 	y 	p -2, and 
computes the shared key K=(ax)ymodp.Bob encrypts the 
message using its signatures and sends to Alice 
ESB(aymodp). 
B�A: ESB(aymodp) 
d. Alice computes the shared key k =(ay)xmod p, 
decrypts the encrypted data, and uses Bob’s public key 
to verify the received value as the signature on the hash 
of the cleartext 

 
Upon successful verification, Alice and Bob accepts k 
that is actually shared with Bob, and sends Bob an 
analogous message. 
 
Eve cannot alter the original exponentials without 
triggering a failure during Alice and Bob’s key 
agreement. This precludes the man-in-middle attack we 
have focused on and defends Alice and Bob’s key 
exchange against several other possible active man-in-
middle attacks. 
 
Results and Conclusions 
Here we have investigated and analysed man-in-the-
middle attack on the Diffie-Hellman key exchange 
protocol. In particular, if the Miller-Rabin primality test 
is used, for attack the algorithm’s complexity is O((log 
N)3)with N being the input prime number.. We 
demonstrated a technique, authentication that can 
prevent the attack. In fact, it appears industry has begun 
to adopt the prime order subgroup technique to defend 
against the attack. It is possible that analysing the given 
prime number, capturing the required messages, 
altering those messages, and forwarding the messages 
to the intended recipients will be too time-consuming. 
This would obviously alert the parties of possible 
compromise.  
 
For example eve can try man in middle attack in 2 
ways. 
1. He can try to send messages to bob pretending 
that the message is sent by the alice but, he will fail 
because bob can easily know that the message is not 
being sent by alice. 
2. He can try to manipulate the message and send 
the manipulated message to bob, when bob recieves the 
method he will find that this is not the true message 
because signature of the message do not match with the 
signature of alice. 
In this way we can make the key exhange free from 
man-in-middle attack.  

 
Below is the graph of complexity of Attack Algorithm. 
Since we have used the Miller-Rabin Primality test so, 
the complexity of Attack Algorithm will be O((logN)3). 
  The Complexity of proposed method 
depends upon the key size used the recommended Key 
size is of 1024 bits. So that the Key Exchange becomes 
an extremely secure process and no one can 
compromise the privacy of the users. 
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Graph of complexity of Attack Algorithm 
 
 
Example of the implementation of the proposed method 
is: 
 
the value of p is: 65537 
the value of q is: 1073 
 
The value of (N) is: 70321201 
The public key (e) is: 3 
The value of (Phi) is: 70254592 
The private key (d)is: 46836395 
 
Implementation of Diffie-Hellman algorithm 
 
value of prime number pr is: 65537 
primitive root of pr is(�): 
     3 
the value of prime number x: 17 
 
the key value to be send is: 
       32273 
 
Cipher Text of the entered Message: 
    15767613 
 
Decrypted Message is: 
     32273 
 

Another example of implementation can be the 
following: 
 
the value of p is: 173 
the value of q is: 139 
 
The value of (N) is: 24047 
The public key (e) is: 5 
The value of (Phi) is: 23736 
The private key (d)is: 18989 
 
Implementation of Diffie-Hellman algorithm 
 
value of prime number pr: 17 
primitive root of pr is: 
     3 
 
Enter the value of prime number x: 3 
the key value to be send is: 
    10 
 
Cipher Text of the entered Message: 
        3812 
 
Decrypted Message is: 
    10 
 
 

 
Graph Between value of cipher text and key to be encrypted 
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