
IJITKM Volume 7 • Number 2 Jan– June 2014 pp. 169-172 (ISSN 0973-4414)

 169

A Review on Optimizing COCOTS model in
Component based software engineering approach

Dr. Gundeep Tanwar, Anshula Verma

Department of Computer Science, BRCM college of Engineering and Technology, Bahal
mr.tanwar@gmail.com, anshulaverma4@gmail.com

Abstract - The field of software engineering and
software technology is developing very fast.
 That is, we introduce new concepts, methods,
techniques and tools—or change existing ones and
emphasize their value. A major turn in software
engineering leading to Component ware has
dramatically changed the shape of software
development. Traditional software development
approach is incapable to meet all requirements.
CBSE the new paradigm in software development
based on the idea of integrating COTS components.
Component based software engineering (CBSE)
approach that offers inherent benefits in software
quality, development productivity and overall
system cost.COCOTS model is widely used in
CBSE to estimate effort, cost and time. In this
paper we will study the comparative analysis of
traditional and CBSE approaches using models to
measure the development cost, effort and time.
Keywords: COCOTS, COCOMO II, Effort
estimation, COTS, scale factors, effort multipliers.

INTRODUCTION

Today’s software systems are becoming more and
more complex, large scale, and difficult to control.
These things cause production costs to skyrocket
and higher risks to move to new technologies. As a
result of this there is a demand for a software
development paradigm that will lower cost and
raise efficiency.
One of the most promising development models is
component based software engineering. This
model is based on the notion that developers can
select appropriate off-the-shelf software
components and build them together using well
defined software architecture [1].
 Component based software engineering is
concerned with the rapid assembly of systems from
components. These components and frameworks
have certified properties; which provide the basis
for predicting the properties of systems built from
components.
 This kind of software approach is very different
from the traditional approach in which the software
is built from the ground up. Each of these
commercial off-the-shelf (COTS) components can
be developed by different companies using even
different languages and platforms.

If you look at Figure 1 you can see how these
COTS can be taken out of a component repository
and assembled into a target software system.[2]

 The constructive COTS integration cost model
(COCOTS) is an extension of COCOMO II. It is
developed for estimating cost of integrating COTS
software into the new system. There are two
defining characteristics of COTS software in this
model:-
The COTS product source code is not available to
the application developer.
The future evolution of the COTS product is not
under the control of the application developer.
 COCOTS effort estimation is made by summing
up the resulting effort of these models:-
 (1) Candidate COTS component assessment
 (2) COTS component tailoring
 (3) The development and testing of any integration
or "glue" code needed to plug a COTS component
into a larger system [3]

1. Traditional and component based software
development
In traditional approach development approach, we
implement the system from scratch, it require large
time, cost &effort in s/w development.
CBSE approach more focus on the development of
s/y by selecting appropriate reusable components.
Development by assembling the pre-existing or
reusable components in CBSE approach is helping
in increasing productivity, quality and wider range
of usability.[4]

IJITKM Volume 7 • Number 2 Jan– June 2014 pp. 169-172 (ISSN 0973-4414)

 170

2. Component based lifecycle process model
Component-based software engineering (CBSE)
focuses on building large software systems by
integrating previously existing reliable, reusable
and robust software components rather than
implementation the entire software system from
scratch [4]. In CBSE, the notion of building a
system by writing code or programming the entire
system has been replaced with building a system by
assembling and integrating existing software
components. In contrast to traditional development,
where system integration is often the tail end of an
implementation effort. A component-based system
(CBS) is integration centric with a focus on
assembling individual components, to develop the
application. In CBS, component source code
information is usually unavailable. Each
component introduces properties such as
constraints associated with its use, interactions with
other components and customizability properties
[5].

3. Stages in CBSE life Cycle
Component-based software systems are developed
by selecting various components and assembling
them together rather than programming an overall
system from scratch, thus the life cycle of
component-based software systems is different
from that of the traditional software systems. The
life cycle of component based software systems can
be summarized as follows [6]
Components selected in accordance to the system
requirements.
a) Requirements analysis
b) Software architecture selection, construction,
analysis, and evaluation c) Component
identification and customization d) System
integration e) system testing

f) Software maintenance

a) Requirements analysis: - Component
requirement analysis is the process of discovering,
understanding, documenting, validating and
managing the requirements for components.
b) Software Architecture Selection:-The
objective of this phase is to select the architecture
of the component according to the user
requirements .In this we will construct the
component and that component can be Component
off the shell (COTS) component.
c) Component Identification and
Customization:-
Identification of the component can be done by
selecting the right components in accordance to the
requirement for both functionality and reliability.
Component Customization is the process that
involves: -
 1) Modifying the component for specific
requirement.
 2) Doing necessary changes to run the component
on special platform.
 3) Upgrading the specific component to get a
better performance and higher quality.
d) System Integration: - It is the process of
assembling components selected into a whole
system under the designed system architecture. The
objective of system integration is the final system
Composed of several components.
e) System Testing: - System testing is the process
of evaluating a system to
i) Confirm that the system satisfies the specified
requirements.
ii) Identify and correct the defects in system in
system implementation.

IJITKM Volume 7 • Number 2 Jan– June 2014 pp. 169-172 (ISSN 0973-4414)

 171

 f) System Maintenance:-It is the process of
providing service and a maintenance activity
needed to use the software effectively after it has
been delivered.

4. COCOMO II Model
 The COCOMO II model was created to meet the
need for a cost model that accounted for future
software development practices. The new model
new version of COCOMO 81 and ada COCOMO
models. COCOMO II is an objective cost model for
planning and executing software projects.. The
current version of COCOMO II application
supports only COCOMO II calculation, which is
the estimation of cost, effort, and schedule of the
new project.
COCOMO II has three sub models [7]:
1) Application Composition model.
2) The Early Design
3) Post- Architecture models
ALGORITHM used to find out the effort:
STEP1->input develop software.
STEP2->Compute value of PMnominal/Effort.
STEP3->Find the size of software KLOC.
STEP4->calculate the effort equation by
 Effort/PMnominal=A (size/KLOC) ^B
STEP5->Analyze the result
STEP6->END [1]

5. COCOTS Model
 The” constructive COTS integration cost model “is
an extension of COCOMO 11. COCOMO 11
models does not work there for the estimating of
the effort of s/w s/y where it is not able to access
the original source code of components. A COCOT
is developing for estimating cost of integrating
COTS s/w into new s/y.
COCOTS effort estimation is made by summing up
the resulting effort of these models:-
(1) candidate COTS component assessment,
(2) COTS component tailoring,
(3) the development and testing of any integration
or "glue" code needed to plug a COTS component
into a larger system [8].
ALGORITHM used to find out the effort:
STEP1-> input develop software.
STEP2-> Component Assessment Effort-
 PAE=IFE+DAE
 Initial Filtering Effort (IFE) = � [(#COTS
candidates in class)(average initial filtering effort
for class)] over all classes
Detailed Assessment Effort (DAE) = � [(#COTS
candidates in class) (average detailed assessment
effort for class)] over all classes, by project domain
STEP3-> Project Tailoring Effort (PTE) = (#COTS
tailored in classes) (average tailoring effort for
classes and complexity) [9]
STEP4-> Glue Code Effort = A* [(size)
(1+CREVOL)] ^B* � (effort multipliers)
Where

A = linear scaling constant
Size = size of the glue code in source lines-of-code
or function points
CREVOL = percentage rework of the glue code
due to requirements change or volatility in the
COTS products
B = an architectural nonlinear scaling factor
Effort multipliers = 13 multiplicative effort
adjustment factors with ratings from very low to
very high [9]
STEP6->Analyze the result
STEP7->END

6. Conclusion
In this paper we have discussed about the cost,
effort computing models. The earlier COCOMO II
model was being design for the cost computing and
this is an overview for the COCOTS model. The
comparison will be done by optimizing COCOTS
model.

REFERENCES-

[1] Puneet Go swami, Pradeep Kumar , “Effort

Estimation in Component Based Software
Engineering,” International Journal of
Information Technology and Knowledge
Management, Vol. 2, No. 2, pp. 437-440
(2009).

[2] Xia Cai, Michael R. Lyu, Kam- Fai Wong, Roy

Ko, “Component Based Software Engineering:
Technologies, Development Frameworks, and
Quality Assurance Schemes,” In Proceedings
of APSEC’2000, pp. 372-379 (2000).

[3] B.W. Boehm, J. R. Brown, Y. Yang, “A

Software Product line Life Cycle Cost
Estimation Model,” IEEE Proceedings of
Empirical Software Engineering ISESE’04,
0-7695-2165-7, USA, pp. 156-164, August
(2004).

[4] Poom Naunchan, Daricha Sutivong,

“Adjustable Cost Estimation Model for COTS-
based Development,” Preliminary Proceeding
of the Australian Software Engineering
Conference (ASWEC’07) 0-7695-2778-7, pp.
341-348, April (2007).

[5] Frank Luders, “Use of Component-Based

Software Architectures in Industrial Control
Systems,” Sweden, ISBN number: 91-88834-
19-0, pp. 124-127 (2003).

[6] M. Morisio, C.B. Seaman, V.R. Basili and A.T.

Parra, “COTS-Based Software Development:
Processes and Open issues,” In Proceedings of
Journal of Systems and Software, USA, Vol.
61,Issue 3, pp. 189-199, April (2002).

IJITKM Volume 7 • Number 2 Jan– June 2014 pp. 169-172 (ISSN 0973-4414)

 172

[7] M. Vieira, M. Dias, D.J. Richardson,

“Describing Dependencies in Component
Access Points,” Proceedings of the 4th
Workshop on CBSE, 23rd International
Conference on Software Eng. (ICSE 2001),
Toronto, Canada, pp : 115-118 (2001).

[8] B.W. Boehm, J. R. Brown, Y. Yang, “A

Software Product line Life Cycle Cost
Estimation Model,” IEEE Proceedings of

Empirical Software Engineering ISESE’04,
0-7695-2165-7, USA, pp. 156-164, August
(2004).

 [9] Chris Abts, Barry W. Boehm and Elizabeth

Bailey Clark, “COCOTS: A COTS Software
Integration Lifecycle Cost Model-Model
Overview and Data Collection Findings,”
Technical Report USC-CSE-2000-501, USC
Center for Software Engineering, (2000).

