m Volume 6 « Number 2 « July-December 2013 pp. 113-117

REGRESSION TESTING TECHNIQUES: A SURVEY

Tanvi Agrawal' Vandana Sharma? and Arun Prakash Agrawal®

ABSTRACT: Regression testing is a part of software maintenance which consumes around two-third of the overall software life
cycle cost hence; it is an expensive activity that may be conducted either manually by re-executing a subset of all test cases or
using automated capture/playback tools. Capture/playback tools enable the software testers to capture test cases and results for
subsequent playback and comparison. Regression testing tests both the modified code and other parts of the program that may
be adversely affected by changes introduced in the program or a part of it. Test case selection selects the test cases to test the
modified part of the program from the original test suite. Test case prioritization reorders test cases in a way that premature fault
detection is maximised. In this paper we have done a survey of selection and prioritization techniques in regression testing.

Keywords: Software Testing, Regression Testing, Test Case Selection, Test Case Prioritization.

1. INTRODUCTION

Software Testing is the process of executing a program or
system with the intent of finding errors. This is done after
the development phase is complete. Once the product is
delivered it enters into the maintenance phase. Software
maintenance is an activity which includes enhancements,
error corrections, optimization and deletion of existing
features. These modifications may cause the system to work
incorrectly. Therefore, Regression Testing becomes
necessary. Regression testing is a type of software testing
executed in the maintenance phase which uncovers new
errors in existing functionality of the software after changes
have been made, such as functional enhancements, patches
or configuration changes. An important difference between
development testing and regression testing is that while
performing regression testing an established suite of tests is
available for reuse. A regression test means that whenever a
new function is added or modifications are done in the
software, all previous validated test cases are run, and the
results are compared with the standard results previously
stored on file. Major objectives of regression testing are
firstly retest changed components and secondly check the
affected parts. This testing is done to make sure that new
code changes should not have any side effects on the
existing functionalities. It ensures that old code still works
once the new code changes are done. Figure 1 below shows
the various tasks performed in regression testing. The
test cases are classified as: reusable, re-testable, obsolete,
new-structural and new-specification test cases [1].

1 ASET, Amity University, Sector-125, Noida, India
E-mail: tanviagrawall 987 @ gmail.com
2 ASET, Amity University, Sector-125, Noida, India
E-mail: vandysharmal2@ gmail.com
Assistant Professor, Amity University, Sector-125, Noida, India
E-mail: apagrawal @amity.edu

Figure 1: Various Tasks Performed in Regression Testing [11]

1.1. Regression Testing Techniques

Retest all: This is the method for regression testing in which
all the tests in the existing test suite are re-executed. This is
very expensive as it requires huge time and resources. It is
100% fault detecting technique and also there is no size
reduction in the test suite.

Regression Test Selection (RTS): RTS selects specific
test cases from the existing test suite instead of running the
entire test suite again. The strategy of RTS is to minimize
the test suite and maximize fault detection ability. Selected
test cases can be classified as:

(1) Reusable Test Cases that can be used in succeeding
regression cycles.

(2) Obsolete Test Cases that can’t be used in succeeding
cycles.

114 TanvI AGRAWAL VANDANA SHARMA AND ARUN PRAKASH AGRAWAL

Prioritization of Test Cases: 1t is ordering of test cases
for testing depending on business impact, critical &
frequently used functionalities. This type of ideal ordering
of test cases will greatly reduce the test suite of regression.

2. REGRESSION TEST CASE
SELECTION (RTS)

Regression test selection (RTS) techniques selects a subset
of valid test cases from original test suite {T} to test that the
modified part of the program does not affect the unmodified
parts of a program and hence the program must continue to
work correctly. It affects the cost-effectiveness of regression
testing and involves two major activities:

(1) Identification of the modified parts of the program

(2) Selecting the subset of test cases that has high
probability of detecting errors.

2.1. Outline for Regression Test Selection (RTS)
Techniques [2]

Some of the matrices and characteristics on the basis of
which RTS techniques can be categorized as: inclusiveness,
precision, efficiency, and generality.

Inclusiveness: It measures the extent to which the RTS
technique chooses modification revealing tests from
previous test suite {T} for inclusion in modified test
suite {T'}.

Precision: It measures the extent to which the RTS
technique omits test cases that does not reveal
modifications.

Efficiency: The efficiency of RTS technique measures
the space and time efficiency which depends on the
computational cost and the size of the test suite selected by
the technique.

Generality: The generality of RTS technique is its
ability to perform in different environment and situations.
The technique needs to be practical, able to handle realistic
modifications and does not depend on some specific tools.

2.2. Various Techniques of RTS are

1. Random Technique: In this random technique the test
cases are selected randomly without following any
criteria from the original test suite [3].

2. Integer Programming Approach: One of the earliest
approaches to test case selection was used in Integer
Programming (IP) to represent the selection problem
for testing FORTR AN programs presented by Fischer
[8, 49]. It presented a selective test case technique to
select test suites and uses system of linear equations to
yield segment coverage of modified code. Lee and He

[2, 25] proposed a similar technique. Fischer, Raji, and
Chruscicki [2, 11] extended Fischer's earlier work
incorporating information on variable definitions and
its uses. Hartmann and Robson [2, 18], [2, 19], [2, 20]
extended and implemented Fischer, Raji, and
Chruscicki's techniques. IP technique use structures of
linear equations for expressing relationships between
tests and program segments. The track program
segments reached by retest, segments accessible from
other segments and information about the segments
form matrices which are used to obtain system of linear
equations. It does not necessarily perform minimization
rather it can select between numbers of test cases
traversing the corresponding coverage entity.

Path Analysis: Benedusi [8,9] introduced a selection
technique based on path analysis. They constructed
exemplar paths from the original program P and the
modified program P’ expressed in an algebraic
expression. The technique is then required to compare
between the exemplar path of P and exemplar path of P’
and classify them into new, modified, cancelled or
unmodified paths. In P the paths executed by the test
cases are known and hence all the test cases that will
traverse modified paths in P’ are selected.

Data-flow Analysis Technique: This technique
identifies the definition-use pairs that are new, modified
or deleted in P', and select those pairs of test cases that
exercise these pairs. Two approaches were given for
data flow analysis i.e. incremental technique and non-
incremental technique. In the incremental technique a
single change is processed, tests are selected for that
change, information about the test trace and data flow
are incrementally updated and then the process is
repeated for the next change. In the non-incremental
technique a multiply-changed program is processed
considering all modifications simultaneously. The
dataflow regression testing techniques described by
Gupta, Harrold, and Soffa [2, 13], Harrold and Soffa [2,
15] Taha, Thebaut, and Liu [2, 39], and Ostrand and
Weyuker [2, 31] are sufficiently alike to justify treating
them together.

Safe Technique: This technique was implemented by
Rothermel and Harrold. They implemented a safe
algorithm which is implemented as a tool called DejaVu
[3]. This tool performs the depth first search on two
control flow graphs (CFG) - one is the CFG of the
original program and the other one is the CFG of the
modified program.

Symbolic Execution Technique: Yau and Kishmoto
[2, 45] introduced symbolic execution approach for
test case selection techniques. It uses symbols for
variable values rather than using them as actual values
and also used input partitions and symbolic execution

REGRESSION TESTING TECHNIQUES: A SURVEY

to select the test cases and execute them. In this
approach the input partitions are derived from
analysing code and specifications for the modified
program. Then new test cases are generated so that each
input partition value is executed at least once by the
test case. Once the information is given that where the
code has been modified, the edges in the control flow
graph for the new program are recognized that leads to
the modified program. Next the symbolic execution is
performed on all the test cases and determines the test
cases that traverse edges that do not reach any
modification. The symbolic test cases that reach the
modifications are not required to be executed more and
one which matches with the symbolic test cases are
retested again. The shortcoming of this approach is
algorithmic complexity of the symbolic execution.

Dynamic Slicing Based Technique: Slicing technique
is a test case selection technique introduced by Agrawal
et al. [2, 1]. There are four types of slicing techniques
i.e. dynamic slice, execution slice, relevant slice and
approximate relevant slice. An execution slice of a
program contains the same set of statements executed
by the given test case and also the output of the program
is not affected. Dynamic slice is a subset of execution
slice. A dynamic slice of a program contains the set of
all the statements in the execution slice which have an
influence on the output statement. A relevant slice for
a test case is similar to the dynamic slice for the same
test case with all the predicate statements that, it
changes would be done, it would return different
output. Finally, the approximate relevant slice in a
program is like a dynamic slice which contains all the
predicate statements in the execution slice.

Textual Difference Technique: A selection technique
was proposed by Volkolos and Frankl [8, 165] [8, 166].
This technique is based on the textual difference
between the source codes of two versions of system.
UNIX tool was applied to the source code of different
versions of the system to identify the modified parts.
This technique is similar to CFG based graph walk
approach.

Graph-Walk Technique: Rothermel and Harrold
presented regression test case selection techniques
based on graph walking of Control Dependence Graphs
(CDGs), Program Dependence Graphs (PDGs), System
Dependence Graphs (SDGs) and Control Flow Graphs
(CFGs) [8, 135][8, 137][8, 139][8, 140]. The difference
between CDG and PDG is that CDG lacks data
dependency relations. To identify the points in a
program through which execution traces reaches the
modifications, a depth-first is performed to traverse both
the programs P and P'. All the test cases are selected
that execute the control-dependence predecessors of

10.

11.

12.

13.

14.

115

the mismatching node if a node in the CDG of P is not
same as that to the corresponding node in the CDG of
P'. PDG approach is used for intra-procedural selection
and SDG approach is used for inter-procedural
selection. PDGs contain data dependence for a single
procedure; SDGs extend this to a complete program
with multiple procedures. By using these graphs, the
algorithm is able to check whether a modified
definition of a variable is actually used later. The CFG
technique follows the approach which was introduced
for the CFG technique. CFG is more efficient technique
with a simpler representation of the structure of the
program.

Minimization Technique: In this technique a simulator
tool is implemented which works as a minimization
technique. The tool is implemented using the regression
test selection safe algorithm (DejaVu) implemented by
Rothermel and Harrold [3].

Modification-Based Technique: This technique is
based on test tube framework which partitions the
program into entities and monitors the execution (o set
up the relationship between the program and entities
and then the selected test cases are re-executed. It is
contemplation of an extended adaptation of graph walk
technique. Pointer handling is the only weakness of
this technique and work on assumption basis.

Firewall Approach: 1.eung and White introduced the
firewall approach and later implemented it for regression
testing of system integration [8, 102] [8, 103][8, 171]
[8, 172]. The main concept revolves around the
modules of the system that need to be retested. They
categorised the modules into the following categories:
No Change, Only Code Change, and Spec Change. This
approach has been functional to Object-Oriented
programs [8, 9] [8, 169] [8, 170] and GUIs [8, 168] and
later the information of this approach has been extracted
by many researchers.

Design-Based Approach: This approach is presented
by Briand et al. for UML-Based designs [8, 17] [8, 18].
There is an assumption in this approach that there is
traceability among the design and the regression test
cases. This approach is likely to execute RTS of code-
level test cases from the contact analysis of UML design
models. It classifies the applicable test cases into these
categories: obsolete, re-testable and reusable [8, 101].

Cluster Identification: This technique is a test case
selection technique based on analysis of the Control
Flow Graph (CFG). It identifies the clusters prepared
by the single entry and single exit of the CFG of the
program [8, 5]. The idea behind this technique is to
create two CFG's one for the original program and one
for the modified program. After receiving both the

116

CFG’s they compared both the CFG's on the basis of
node of the graph. The best part of this technique is
that it guarantees to select all the modified test cases in
spite of the kind of modification.

15. SDG Slicing Approach: This technique is based on the
program slicing which further depends on the basis of
program dependency graphs [8, 8]. It introduced the
meaning of an equivalent implementation outline and
identifies all the test cases that is crucial to be reused.
Bates and Horowitz proposed test case selection
techniques based on program slices from Program
Dependency Graphs. In this technique, the equivalent
behaviour is recognized when the slices of two
statements is isomeric. The reusable test cases are
chosen on the basis of sequence retrieved from the
recognition stage. This technique is further extended
by Binkley who introduced the idea of frequent
execution patterns, which corresponds to the
implementation patterns of the original technique
proposed, in order to detain the numerous incantation
of the course of action.

3. REGRESSION TEST CASE
PRIORITIZATION

These techniques help in the execution of the test cases
based on the assigned priority to the test cases. The priorities
are set by certain criteria. It is beneficial as meeting the
testing goals earlier can lead to desired results. This
technique specifies which test case will be addressed first
from the original test cases. It does not discard any test case
and the efficiency of the regression testing depends on the
criteria of the prioritization. [15] General test case
prioritization and version specific test case prioritization
are the two varieties of test case prioritization. In General
test case prioritization the test cases are prioritized on the
basis of their usefulness and without any prior knowledge
of modifications. In specific test case prioritization the test
cases are prioritized on the basis of with any prior knowledge
of modifications. All the test cases are prioritized on the
basis of risk analysis. The risk analysis is done on the basis
of complexity, criticality, and impact of failure. The impact
of failure can range from ‘no failure’ to ‘human life’. The
risky factor should be tested on higher priority.

3.1. Various Techniques of Regression Test
Prioritization are:

1. Coverage-Based Prioritization: This technique can be
used to examine the internal structure of the program
[15]. It is based on: code-coverage which is done for
the complete code of the program, branch-coverage
done to test every ‘true’ and ‘false’ condition of the
program , path-coverage done to test each and every
path of the program, statement-coverage is done in order
to achieve 100% execution of every statement of the

2.

TanvI AGRAWAL VANDANA SHARMA AND ARUN PRAKASH AGRAWAL

program, condition-coverage is done to achieve the
confidence about the correctness of the program,
variable-coverage and requirement-coverage is done
till time and resources are available or confidence is
achieved.

Random Prioritization (Random): This technique
selects the order of the test cases randomly from the
original test suite [13].

Interaction Testing: Interaction testing is required
when different combinations of environments
(operating systems) are required like, configuration
testing. It involves multiple combinations of
components and not simply putting the components
together [8]. This type of testing is required to ensure
that the system under test works correctly. It is a
systematic technique for constructing the program
structure and at the same time conducting tests to
discover errors linked with interfacing. The purpose of
this technique is to take unit tested components and
construct a program structure that has been described
by the design. The integration testing is of two types:

(a) Decomposition Based Integration: Decomposition
Integration is based on the functional
decomposition of the System. These are of four

types:
¢ Top-down Approach
¢ Bottom-up Approach
* Mixed Approach
* Big bang Approach
(b) Call Graph Based Integration

e Pair-wise Integration: this testing is done
basically to eliminate the stub and driver.

e Neighborhood Integration: It involves
reduction in the number of integration test
sessions. In this testing there is a graph
consisting of set of nodes that separates from
each other one edge away.

Optimal Prioritization (Optimal): This technique
intends to find out the optimal order of the test cases
on the basis of genetic algorithm which tries to find
out the best and effective order of test cases [13].

Model-Based Prioritization: This technique prioritizes
or reorders the test cases for object-oriented programs
and represents all the features of object-oriented
i.e. polymorphism, inheritance, aggregation and
association [14]. Whenever there are some changes in
the program it compares the code of both the modified
and the original program in-order to find the modified
statement.

REGRESSION TESTING TECHNIQUES: A SURVEY 117

6. Historical Fault Detection Effectiveness Prioritization:
This technique reorders the test cases on the basis of
the historical values depending on the fault detection
effectiveness of the test cases [13].

7. Cost-Aware Test Case Prioritization: This prioritization
technique not only depends on highest priority and
the lowest priority of the test cases in order to achieve
the results but also considers the cost effectiveness of
the techniques so that the selected technique should
not be costly as compared to the original test suite.

8. Time-Aware Test Suite Prioritization: This technique
reorders the test cases on the basis of genetic algorithm
and the fitness function. This approach considers both
the execution history and coverage of the program [13].

9. Prioritization Approaches Based on Other Criteria:
The majority of active prioritization concerns with the
structural coverage in several forms. There are various
prioritization techniques based on other criteria [8, 100]
[8, 158][8, 163] [8, 180].

These criteria’s are:

¢ Distribution-based Approach
¢ Human-based Approach

e History-based Approach

¢ Requirement-based Approach
¢ Model-based Approach

¢ Other Approaches

4. CONCLUSION

This paper provides a detailed analysis of trends in regression
test case selection and prioritization. The study of trends
reported in this paper reveals some intriguing properties of
regression test selection and prioritization techniques. This
paper discussed some work that has been done in the
techniques of test case selection as well as in prioritization
which helps future researchers to study, learn and
understanding the work done till now.

REFERENCES

[1] H.Leung and L. White, “Insights into Regression Testing”,
In Proceedings of the Conference on Software Maintenance.

(2]

(3]

[4]

[5]

[6]

(7]

(8]

(0]

[10]

[11]

[12]

[13]

[14]

[15]

G. Rothermel, M.J. Harrold, “Analyzing Regression Test
Selection Techniques”, IEEE Transactions on Software
Engineering, 22, No. 8, August 1996.

T. L. Graves, M.J Harrold, M Kim, A Porter, G Rothermel,
“An Empirical Study of Regression Test Selection
Techniques”, ACM Transactions on Software Engineering
and Methodology.

G. Rothermel and M.J. Harrold, “A Safe, Efficient Algorithm
for Regression Test Selection”, Technical Report 115,
Clemson University, Clemson, SC, April, 1993.

G. Duggal, Mrs. B. Suri, “Understanding Regression Testing
Techniques”, Guru Gobind Singh Indraprastha University,
Delhi, India.

S. Biswas and R. Mall, Regression Test Selection Techniques:
A Survey, Informatica 35 (2011).

X. Lin, “Regression Testing in Research and Practice”,
Computer Science and Engineering Department University
of Nebraska, Lincoln.

S. Yoo, M. Harman, “Regression Testing Minimisation,
Selection and Prioritization: A Survey, King’s College
London”, Centre for Research on Evolution, Search &
Testing, Strand, London, WC2R 2LS, UK.

Y. Chen, R. L. Probert, D.P. Sims, “Specification-Based
Regression Test Selection with Risk Analysis”, CASCON
'02 Proceedings of the 2002 Conference of the Centre for
Advanced Studies on Collaborative Research.

Sujata, G.N. Purohit, “Tool Support for Test Case Selection
in Regression Testing”, International Journal of Software
Engineering & Applications (IJSEA), 2, No. 4, October 2011.

A.P.Mathur, Foundations of Software Testing: Fundamental
Algorithms and Techniques, 2008.

G.Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizing Test Cases for Regression Testing”, IEEE
Transactions on Software Engineering, 27, No. 10,
OCTOBER 2001.

Y.Huang, K.I. Peng, C. Huang, “A History-Based Cost-
Cognizant Test Case Prioritization Technique in Regression
Testing”, The Journal of Systems and Software.

C. R. Panigrahi, R. Mall, “Model-Based Regression Test
Case Prioritization”, ACM SIGSOFT Software Engineering
Notes Page 1 November 2010 35 No. 6.

K.K. Aggrawal, Y. Singh, A. Kaur, “Code Coverage Based
Technique for Prioritizing Test Cases for Regression Testing”’,
ACM SIGSOFT Software Engineering Notes September 2004
29 No. 5.

