International Journal of Information Technology and Knowledge Management

July-December 2012, Volume 5, No. 2, pp. 377-379

ANALYSIS OF RESILIENT BACK-PROPAGATION FOR IMPROVING
SOFTWARE PROCESS CONTROL

Kamaljit Kaur*

ABSTRACT: In this paper, we present the application of the neural network for the identification of Reusable Software
modules in Oriented Software System. Metrics are used for the structural analysis of the different procedures. The values of
Metrics will become the input dataset for the neural network systems. Training Algorithm based on Neural Network is
experimented and the results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE). Hence the proposed model can be used to improve the productivity and quality of software development.

Keywords: Software reusability, Neural Networks, MAE, RMSE, Accuracy.

1. INTRODUCTION

A software bug is an error, flaw, mistake, failure, or fault in a
program that prevents it from behaving as intended(e.g.,
producing an incorrect result). Most bugs arise from mistakes
and errors made by people in either a program’s source code
or its design, and a few are caused by compilers producing
incorrect code [1]. The cost of finding and fixing faults in
software typically rises as the development project progresses
into a new phase. Faults that are found after the system has
been delivered to the customer are many times more
expensive to track down and correct than if found during an
earlier phase[2]. Metrics is defined as “The continuous
application of measurement based techniques to the software
development process and its products to supply meaningful
and timely management information, together with the use
of those techniques to improve that process and its products”
[3]. Software metrics is all about measurement and these are
applicable to all the phases of software development life cycle
from initiation to maintenance.

This paper is organized as follows: Section two
describes the Methodology part of work done, which shows
the steps used in order to reach the objectives and carry out
the results. In the section three, results of the implementation
are discussed. In the last section, on the basis of the
discussion various Conclusions are drawn and the future
scope for the present work is discussed.

2. PROPOSED METHODOLOGY
The methodology consists of the following steps:

2.1 Find the Structural Code and Design
Attributes

The first step is to find the structural code and design attributes
of software systems i.e. software metrics. The realtime defect

* RIMT, Mandi Gobindgarh, Punjab,
Er.kamaljitkaur@yahoo.com

data sets are taken from the NASA's MDP (Metric Data
Program) data repository. The dataset is related to the safety
critical software systems being developed by NASA.

2.2 Collection of Metric Values

The suitable metrics like product module metrics out of these
data sets are considered. The term product is used referring
to module level data. The term metrics data applies to any
finite numeric values, which describe measured qualities and
characteristics of a product. The term product refers to
anything to which defect data and metrics data can be
associated. In most cases products will be synonymous with
code related items such a functions and systems/sub-systems.

2.3 Analyze and Refine Metrics the Metric
Values

In the next step the metrics are analyzed, refined and
normalized and then used for modeling of fault tolerance in
software systems. In the step, table of module levels metrics
PC5_product_module_metrics is joined with
PC5_defect_product_relations and thereafter again the join
operation of the resultant table is performed with
PC5_static_defect_data. An Entity-Relationship diagram
relates Modules to Defects and Defects to Severity of
Defects is shown in figure 1.

In the figure 1 the MODULE_ID is the unique numeric
identifier of the module and DEFECT_ID is the unique
numeric identifier of the associated defect. The SEVERITY
field in the PC5_static_defect_data table shows the value that
quantifies the impact of the defect on the overall environment
in the range of 1 to 5. Where, 1 means most severe and 5
being least severe. For example, severity 1 may imply that
the defect caused a loss of functionality without a workaround
where severity 5 may mean that the impact is superficial and
did not cause any major disruptions to the system.

378

Product_module_metrics
PARAMETER_COUNT

1 LOC_EXECUTABLE

EDGE_COUNT
DESIGN_COMPLEXITY
NODE_COUNT

NUM_OPERANDS

Defect_product_relations

MODULE_ID 1

DEFECT_ID

Static_defect_data

DEFECT _ID 1
SEVERITY

Figure 1: An Entity-Relationship Diagram Relates Modules
to Defects to Severity of Defects

2.4 Explore Technique Based on Neural Network
2.4.1 Resilient Back-propagation Algorithm

It is a supervised learning method, and is a
generalization of the delta rule. It requires a dataset of the
desired output for many inputs, making up the training set.
It is most useful for feed-forward networks (networks that
have no feedback, or simply, that have no connections that
loop). The term is an abbreviation for “backward
propagation of errors”. Backpropagation requires that the
activation function used by the artificial neurons (or
“nodes”) be differentiable. The algorithm acts on each
weight separately. For each weight, if there was a sign
change of the partial derivative of the total error function
compared to the last iteration, the update value for that
weight is multiplied by a factor -, where 0 < n"< 1. If the
last iteration produces the same sign, the update value is
multiplied by a factor of *, where n* > 1. The update values
are calculated for each weight in the above manner, and
finally each weight is changed by its own update value, in
the opposite direction of that weight’s partial derivative. This

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND KNOWLEDGE MANAGEMENT

is to minimize the total error function. n* is empirically set
to 1.2 andn~to 0.5.

2.5 Evaluating Algorithm

The comparisons are made on the basis of the more accuracy
and least value of MAE and RMSE error values. Accuracy
value of the prediction model is the major criteria used for
comparison. The mean absolute error is chosen as the standard
error. The technique having lower value of mean absolute
error is chosen as the best fault prediction technique.

e Mean absolute error

Mean absolute error, MAE is the average of the
difference between predicted and actual value in all test
cases; it is the average prediction error [4]. The formula for
calculating MAE is given in equation shown below:

|a1 —6 |+|a2—cz |+"'+|an_cn |

n

Assuming that the actual output is a, expected output
isc.

* Root mean-squared error

RMSE is frequently used measure of differences
between values predicted by a model or estimator and the
values actually observed from the thing being modeled or
estimated [7]. It is just the square root of the mean square
error as shown in equation given below:

\/(al _C1)2 +(a, —C2)2 +...+(a, —cn)2

n

The mean-squared error is one of the most commonly
used measures of success for numeric prediction. This value
is computed by taking the average of the squared differences
between each computed value and its corresponding correct
value. The root mean-squared error is simply the square root
of the mean-squared-error. The root mean-squared error
gives the error value the same dimensionality as the actual
and predicted values. The mean absolute error and root mean
squared error is calculated for each machine learning
algorithm i.e. Neural Network.

3. EXPERIMENTAL RESULTS AND
DISCUSSIONS
In this section, we discuss the experimental results obtained using

Resilient Backpropagation training algorithm. Experiments are
conducted on NASA’s public domain defect dataset.

3.1 Data Set

As mentioned above, experiments are conducted on NASA’s
public domain defect dataset. The realtime defect data set
used is taken from the NASA’s MDP (Metric Data Program)

ANALYSIS OF RESILIENT BACK-PROPAGATION FOR IMPROVING SOFTWARE ProCESs CoNTROL

data repository, the details of that dataset contains 293
Object Oriented modules with different values of impact of
faults labeled as 1, 2, 3, 4 and 5. The severity level 5 are not
present in the dataset. So, the level 1 represents the highest
severity, level 2 represents of less severity as compared to
level 1 and level 3 represents the medium fault and level 4
represent the minor fault that can be overlooked to save time.
Details of the Type of Modules in the Dataset are shown in
Table 1 in tabular form and Figure 2 in graphical form.

Table 1
Details of the Type of Modules in the Dataset

Level Count
1 48
2 207
3 28
4 10
Severity of Impact
@ Severity of

Impact

Figure 2: Graphical Representation of Details of the Type
of Modules in the Dataset

The developed software computes the mean absolute
error, root mean squared error, relative absolute error and
root relative squared error. However, the most commonly

379

reported error is the mean absolute error and root mean
squared error. The root mean squared error is more sensitive
to outliers in the data than the mean absolute error.In the
present work the Neural Network based algorithm
experimented in Matlab 7.7 and after the training network
is tested with testing dataset of 15 values derived from the
PC5 dataset. The overall testing performance of the
algorithm is shown in table II. The results reveal that the
Resilient Backpropagation algorithm performed algorithm
under study with 0.3980, 0.5385 and 80% as MAE, RMSE
and Accuracy values respectively.

REFERENCES

[1] http://puretest.blogspot.in/2009/11/1 .html

[2] Barry Boehm and Victor R. Basili. “Software Defect Reduction
Top 10 List”. Computer, 34(1), 135-147, January 2001.

[3] Bibi S., Tsoumakas G., Stamelos 1., Vlahavas I., “Software
Defect Prediction Using Regression via Classification”,
IEEFE International Conference on Computer Systems and
Applications, Issue Date: March 8, 2006, pp. 330-336,
(http://ieeexplore.ieee.org/xpl/
freeabs_all.jsp?arnumber=1618375)

[4] Challagulla, V.U.B., Bastani, F.B., I-Ling Yen, Paul,
(2005). “Empirical Assessment of Machine Learning Based
Software Defect Prediction Techniques”, 10th IEEE
International Workshop on Object- Oriented Real-Time
Dependable Systems, WORDS 2005, 2-4 Feb 2005, pp.
263-270.

[5] Mahaweerawat, A. (2004). “Fault-Prediction in Object
Oriented Software’s Using Neural Network Techniques”,
Advanced Virtual and Intelligent Computing Center (AVIC),
Department of Mathematics, Faculty of Science,
Chulalongkorn University, Bangkok.

[6] AgusPriyono, Muhammad Ridwan, Ahmad Jais Alias, Riza
Atiq, O.K. Rahmat, Azmi Hassan and Mohd. Alauddin
Mohd. Ali, “Generation of Fuzzy Rules with Subtractive
Clustering”, Jurnal Teknologi, 43(D), Dis. 2005, pp. 143-
153, Universiti Teknologi Malaysia.

[7] Hudepohl J.P., SJ. Aud, T.M. Khoshgoftaar, E.B. Allen,

and J.E. Mayrand, (1996). “Software Metrics and Models
on the Desktop”, IEEE Software, 13(5), 56-60.

