
International Journal of Information Technology and Knowledge Management
January-June 2012, Volume 5, No. 1, pp. 205-209

1 Research Scholar, Department of Computer Science, NIMS
University, Jaipur, India, E-mail: ic.garg188@gmail.com.

MEASURING SOFTWARE REUSABILITY USING SVM BASED
CLASSIFIER APPROACH

Ajay Kumar

ABSTRACT: Here we presented classification of the reusability of software components using Support Vector Machine
(SVM). The identification of Reusable Software modules in Procedure Oriented Software System. Metrics has been used for
the structural analysis of the different procedures. Software metrics for Procedure oriented paradigm has been used in this paper
Cyclometric Complexity Using Mc Cabe’s Measure, Halstead Software Science Indicator, Regularity Metric, Reuse frequency
metric, Coupling Metric. The values of these Metrics will become the input dataset for the different neural network systems.
Neural Network Based Approach is used to establish the relationship between different attributes of the reusability and serve as
the automatic tool for the evaluation of the reusability of the procedures by calculating the relationship based on its training.
Algorithms of neural network are experimented and the results are recorded in terms of Accuracy, Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE).

Hence in this paper the proposed model can be used to improve the productivity and quality of software development.

Keywords: Software reusability, neural networks, MAE, RMSE, accuracy. support vector machine.

1. INTRODUCTION
Software reuse is the improvement efforts of the productivity
of the software because reuse can result in higher quality
software at a lower cost and delivered within a shorter time
[1]. Reused software is more accurate than new software
because already it has been tried and tested in working
system.

Reusable software components have been promoted in
recent years. The software development community is
gradually drifting toward the promise of widespread
software reuse, in which any new software system can be
derived virtually from the existing systems. There are two
approaches for reuse of code: develop the code from scratch
or identify and extract the reusable code from already
developed code. With the existence of the software there is
less uncertainty in the cost of reusing which is an important
factor for project management as it reduces the margin of
error in project cost estimation. This is particularly true
when relatively large software components as sub-systems
are reused. Reusing software can speed up system
production because both development and validation time
should be reduced. Thus the reuse of software in systems
development is a strategy that increases productivity and
quality. Code reuse is the idea that a partial or complete
computer program written at one time can be, should be, or
is being used in another program written at a later time. The
reuse of programming code is a common technique which
attempts to save time and energy by reducing redundant
work.

Major challenge is to develop a robust framework for
software reuse. The proposed framework has two layers. The
first layer is formed by best practices related to software
reuse. Non-technical factors, such as education, training,
incentives, and organizational management are considered.
This layer constitutes a fundamental step before of the
introduction of the framework in the organizations. The
second layer is formed by important technical aspects related
to software reuse, such as processes (reuse, reengineering,
adaptation, component certification), environments, and
tools (repository systems and its associated tools). This
framework constitutes a solid basis for organizations that
are moving towards an effective reuse program. Its elements
not only help the organization in adopting reuse, but also
guide it in the migration process, reducing its risks and
failure possibilities

Reuse is an act of synthesizing a solution to a problem
based on predefined solutions to sub problems. The reuse
activity is divided into six major steps performed at each
phase in preparation for the next phase. These steps are:

1. Developing a reuse plan or strategy after studying
the problem and available solutions to the problem,

2. Identifying a solution structure for the problem
following the reuse plan or strateg.

3. Reconfiguring the solution structure to improve
the possibility of using predefined components
available at the next phase.

4. Acquiring, instantiating, and modifying predefined
components.

5. Integrating the components into the products for
this phase, and. evaluating the products.

mailto:garg188@gmail.com

206 INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND KNOWLEDGE MANAGEMENT

Figure 1.1: Six Major Steps of Formulate Neural Network.

2. RELATED WORK
The measure of a components reusability comes from its
success. Other measures come from static code metrics. There
are basically two approaches to evaluate software
reusability: qualitative and empirical.

Author [5] identified a number of characteristics of
those components, from existing systems, that are being
reused at NASA laboratory and reported that the developers
were successful in achieving a 32 percent reusability index.
Selby’s recent experimental study has identified two
categories of factors that characterize successful reuse-based
software development of large-scale systems: module design
factors and module implementation factors [6]. The module
design factors that characterize module reuse without
revision were: few calls to other system modules (i.e. low
coupling), many calls to utility functions (i.e. high cohesion),
few input-output parameters, few reads and writes, and many
comments. The module implementation factors that
characterize module reuse without revision were small in
size (source lines) and with many assignment statements
(i.e. low Cyclometric Complexity). The modules reused
without revision had the fewest faults, fewest faults per
source line, and lowest fault correction effort.

Chen and Lee developed about 130 reusable C++
components and used these components in a controlled
experiment to relate the level of reuse in a program to software
productivity and quality [9]. The software metrics collected
included the Halstead size, program volume, program level,
estimated difficulty and effort. They found that lower the
value of the software complexity metrics, the higher the
programmer productivity.

Dunn and Knight also experimented and reported the
usefulness of reusable code scavenging [11]. Chen, Nishimoto
and Ramamoorty discussed the idea of subsystem extraction
by using code information stored in a relational database
[12]. They also described a tool called the C Information
Abstraction System to support this process. Esteva and
Reynolds [13] proposed the use of Inductive Learning
techniques based on software metrics used to identify
reusable modules. Their system was able to recognize
reusable components.

Caldiera and Basili [14] proposed a tool called, Care
that was used to identify reusable components according to
a set of “reusability attributes” based on software metrics.
The paper proposed four candidate measures of reusability
based largely on McCabe and Halstead metrics. These
attributes include measurement of utilization of the
component in the problem domain, the cost of reuse and its
quality.

Mayobre [15] described how these techniques can be
extended and used to help in identifying data communication
components of Hewlett-Packard.

Arnold [16] [17] mentioned a number of heuristics that
can be used for locating reusable components in the Ada
source code. The heuristics count the number of references
to a particular procedure, identifying the loosely coupled
modules and identifying modules that carry high cohesion.

The ESPRIR-2 project called REBOOT (Reuse Based
on Object-Oriented Techniques) developed a taxonomy of
reusability attributes. They listed Portability, Flexibility,
Understandability and Confidence as four reusability
factors. The analyst combines the individual metric values
into an overall value of reusability.

3. METHODOLOGY OF WORK
Reusability evaluation System for function Based software
Components can be framed using following steps:

1. Selection of Metric Suit for Procedure Oriented
Paradigm: A framework of metrics is proposed for
structural analysis of procedure or function-
oriented software. The code of software is parsed
to calculate the metric values. The following suits
of metrics are able to explore different structural
dimensions of procedure oriented components.

MEASURING SOFTWARE REUSABILITY USING SVM BASED CLASSIFIER APPROACH 207

The proposed metrics for Function Oriented
Paradigm are as follows:

(a) Cyclometric Complexity Using Mc Cabe’s
Measure [23] [24].

(b) Halstead Software Science Indicator [23] [25].

(c) Regularity Metric [23][25].

(d) Reuse-Frequency Metric [23] [25].

(e) Coupling Metric [23].

2. Calculate the metric values of the sampled software
components.

3. Use SVM Based Classifier for the Reusability
Prediction: SVM is a useful technique for data
classification. Even though it’s considered that
Neural Networks are easier to use than this,
however, sometimes unsatisfactory results are
obtained. A classification task usually involves
with training and testing data which consist of some
data instances. Each instance in the training set
contains one target values and several attributes.
The goal of SVM is to produce a model which
predicts target value of data instances in the testing
set which are given only the attributes.

Support Vector Machine (SVM) is primarily a
classier method that performs classification tasks
by constructing hyperplanes in a multidimensional
space that separates cases of different class labels.
SVM supports both regression and classification
tasks and can handle multiple continuous and
categorical variables. For categorical variables a
dummy variable is created with case values as either
0 or 1.

To construct an optimal hyperplane, SVM
employees an iterative training algorithm, which
is used to minimize an error function. According
to the form of the error function, SVM models
can be classified into four distinct groups:
(a) Classification SVM Type 1 (also known as
C-SVM classification) (b) Classification SVM Type
2 (also known as nu-SVM classification) (c)
Regression SVM Type 1 (also known as epsilon-
SVM regression) (d) Regression SVM Type 2 (also
known as nu-SVM regression).

3.1. Design & Evaluate Neural Network System
The following Neural Network algorithms are experimented:

1. Batch Gradient Descent.

2. Batch Gradient Descent with momentum.

3. Variable Learning Rate.

4. Variable Learning Rate training with momentum.

5. Resilient Backpropagation.

The following are the steps for each Neural Network
based system:

(a) Perform the training of the different neural networks
with the training dataset.

(b) The trained Neural Network is evaluated against
the testing data on the different comparison criteria
as described in the next step.

3.2. Comparison Criteria
The comparisons are made on the basis of value of MAE,
RMSE and Accuracy values of the neural network model.
The details of the MAE and RMSE are given below:

Mean absolute error (MAE): Mean absolute error, MAE
is the average of the difference between predicted and actual
value in all test cases; it is the average prediction error.

Root mean-squared error (RMSE): RMSE is frequently
used measure of differences between values predicted by a
model or estimator and the values actually observed from
the thing being modeled or estimated. The conclusions are
made on the basis of the results calculated in the previous
section.

4. IMPLEMENTATION AND RESULTS
In this paper, the implementation of the algorithm is done
in Matlab environment and SVM toolbox for Matlab is used.
The dataset of procedure oriented software is collected and
Batch Gradient Descent, Batch Gradient Descent with
momentum, Variable Learning Rate, Variable Learning Rate
training with momentum, Resilient Backpropagation, based
neural networks are experimented to obtain the results in
terms of Accuracy, MAE and RMSE values. The mean or
average values of algorithm under study depict that the
accuracy, MAE AND RMSE values of the resilient back
propagation (RB) algorithm experimented respectively.
In this technique first the network is created and training of
the network is performed with the training data set.

Figure 1.2: Bar-Chart of Count of Examples of the
Reusability Output Attribute in the Dataset.

208 INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND KNOWLEDGE MANAGEMENT

The function oriented dataset considered have the
output attribute as Reusability value. The Reusability in
the dataset is expressed in terms of two numeric labels i.e.
Reusable and Non-Reusable. The Graphical representation
of the count of the number of examples of certain reusability
label is shown in the Figure 1.1

Then SVM clustering based algorithm is implemented
in Matlab 7.4. environment and svm clustering algorithm
toolbox for Matlab is used. The input attribute-wise
statistical details of the count of the examples of the labels
are shown in Table 1, Table 2, Table 3, Table 4, Table 5.
The input attributes are expressed in the three linguistic
labels i.e. 1, 2, and 3. The label 1 corresponds to the Low
value, label 2 corresponds to the Medium value and label 3
corresponds to the high value.

Table 1
Statistics of the Input Attribute Coupling in the Dataset

Table 2
Statistics of the Input Attribute Volume in the Dataset

Table 3
Statistics of the Input Attribute COMPLEXITY in the

Dataset

Table 4
Statistics of the Input Attribute Regularity in the Dataset

Table 5
Statistics of the Input Attribute Reuse-Frequency in the

Dataset

The given data is with five Input Attributes i.e.
Coupling, Volume, Complexity, Regularity, Reuse_
Frequency and one Output attributes named as Reusability
Level of the Software Component. Then SVM clustering
based algorithm is implemented in Matlab 7.4.

Figure 1.3: Bar Chart of Statistics of the Input Attribute
in Data Set.

The algorithm learns about its environment through
set of input-output training samples. We will take different
input values to conduct the output. On running algorithm
in Matlab it will show different output as based on SVM
classifier for software prediction.

5. CONCLUSION
In this paper, Support Vector Algorithm (SVM) based
algorithms are experimented to develop the reusability
evaluation system for procedure oriented software systems
like McCabe’s Cyclometric Complexity Measure for
Complexity measurement, Regularity Metric, Halstead
Software Science Indicator for Volume indication, Reuse
Frequency metric and Coupling Metric are used for
structural analysis of a software module. First of all, randomly
selection of training and test sets are made. Thereafter,
Training of support vector machine classifier is performed
with the training dataset created. The training data is
provided to SVM in form of Matrix, where each row

MEASURING SOFTWARE REUSABILITY USING SVM BASED CLASSIFIER APPROACH 209

corresponds to an observation or replicate, and each column
corresponds to a feature or variable. Groups are also provided
to the SVM as Column vector, character array, or cell array
of strings for classifying data in Training into two groups.
It has the same number of elements as there are rows in
Training. Each element specifies the group to which the
corresponding row in Training belongs.

The trained SVM is now used to classify the test dataset
and the performance of the classification is recorded in terms
of the Correct Rate and Error Rate.

REFERENCES
[1] Anderson, J.A (2003)., “An Introduction To Neural

Networks”, Prentice Hall of India.

[2] Arnold, R.S. (1990), “Heuristics for Salvaging Reusable Parts
From Adav Code, SPC Technical Report”, ADA_REUSE_
HEURISTICS-90011-N, March 1990.

[3] Arnold, R.S. (1990)., “Salvaging Reusable Parts From Ada
Code: A Progress Report, SPC Technical Report”,
SALVAGE_ADA_PARTS_PR-90048-N, September 1990.

[4] Basili, V. R. and Rombach, H. D. (1988)., The TAME Project:
Towards Improvement Oriented Software Environments”,
IEEE Trans. Software Eng., 14, No. 6, June 1988, pp. 758-
771.

[5] Basili, V.R. (1989)., “Software Development: A Paradigm
for the Future”, Proceedings COMPAC’89, Los Alamitos,
California, IEEE CS Press, 1989, pp. 471-485.

[6] Boetticher, G. and Eichmann, D. (1993)., A Neural Network
Paradigm for Characterizing Reusable Software”,
Proceedings of the Australian Conference on Software
Metrics, Australia, July, 1993, pp. 234-237.

[7] Boetticher, G., Srinivas, K. and Eichmann, D. (1990)., “A
Neural Net-Based Approach to the Software Metrics”,
Proceedings of the 5th International Conference on Software
Engineering and Knowledge Engineering, San Francisco,
CA, 14-18 June 1990, pp. 271-274.

[8] Caldiera, G. and Basili, V. R. (1991)., “Identifying and
Qualifying Reusable Software Components”, IEEE
Computer, February 1991.

[9] Chen, Y. F. Nishimoto, M. Y. and Ramamoorty, C. V. “The
C Information Abstraction System”, IEEE Trans. on Software
Engineering, 16, No. 3, March 1990.

[10] Dunn, M. F. and Knight, J. C. (1993)., “Software Reuse in
Industrial Setting: A Case Study”, Proc. of the 13th
International Conference on Software Engineering ,
Baltimore, MA, 1993. pp. 56-62.

[11] Esteva, J. C. and Reynolds, R. G. (1991)., “Identifying
Reusable Components using Induction”, International

Journal of Software Engineering and Knowledge Engineering,
1, No. 3, 1991, pp. 271-292.

[12] Frakes, W.B. and Kyo Kang (2005)., “Software Reuse
Research: Status and Future”, IEEE Trans. Software
Engineering, 31, issue 7, July 2005, pp. 529-536.

[13] Herenji, H.R and Khedkar,P(1992),“Learning and Tuning
Fuzzy Logic Controllers through Reinforcements”, IEEE
Trans. on Neural Networks, 3, 1992, pp. 724-740.

[14] Jang, J-S. R. and Sun, C.T. (1995)., “Neuro-Fuzzy Modeling
and Control”, Proceeding of IEEE, March 1995, pp. 123-
135.

[15] Jerome Feldman (1996)., “Neural Networks - A Systematic
Introduction”, Berlin, New-York, 1996.

[16] “Software Reusability and Efficiency: A Scientific And
Technological Study”, Undertaken by Parallab, Bergen Center
for Computational Science, University of Bergen (Norway)
for the Enacts Network, Sectoral Report, Final Version-April
2004, http://www.enacts.org.

[17] Sonia Manhas, Rajeev Vashisht, Parvinder S. Sandhu and
Nirvair Neeru, “Reusability Evaluation Model for Procedure
Based Software Systems”, International Journal of Computer
and Electrical Engineering, 2, No.6, December, 2010.

[18] R W Selby, “Enabling Reuse-Based Software Development
of Large-Scale Systems”, IEEE Transactions on Software
Engineering (2005), 31, Issue 6, pp. 495-510.

[19] EbruArdil, Parvinder S. Sandhu, “A Soft Computing
Approach For Modeling of Severity of Faults In Software
Systems “, International Journal of Physical Sciences, 5(2),
February, 2010, ISSN 1992 - 1950, pp. 74-85. ISI Indexed.

[20] Parvinder S. Sandhu, Pavel Blecharz and Hardeep Singh,
“A Taguchi Approach to Investigate Impact of Factors for
Reusability of Software Components”, Transactions on
Engineering, Computing and Technology, 19, Jan. 2007,
ISSN 1305-5313, pp. 135-140.

[21] Parvinder Singh Sandhu and Hardeep Singh, “Automatic
Reusability Appraisal of Software Components using Neuro-
Fuzzy Approach”, International Journal of Information
Technology, 3, No. 3, 2006, pp. 209-214.

[22] Parvinder Singh and Hardeep Singh (2005), “Critical
Suggestive Evaluation of CKMETRIC”, Proc. of 9th Pacific
Asia Conferenceon Information Technology (PACIS-2005),
Bangkok, Thailand, July 7–10, 2005, pp. 234-241.

[23] http://www.statsoft.com/textbook/support-vector-machines/

[24] Poulin, J.S. (1997).,“Measuring Software Reuse-Principles”,
Practices and Economic Models, Addison-Wesley, 1997.

[25] Richard, W.S. (2005)., “Enabling Reuse-Based Software
Development of Large-Scale Systems”, IEEE Trans. on
Software Engineering, 31, No. 6, June 2005, pp. 495-510.

 [26] R.S. Pressman, “Software Engineering: A Practitioner’s
Approach”, McGraw-Hill Publications, 5th edition,2005.

http://www.enacts.org
http://www.statsoft.com/textbook/support-vector-machines/

