
International Journal of Information Technology and Knowledge Management
January-June 2012, Volume 5, No. 1, pp. 141-145

1 Assistant Professor, Department of Master of Computer
Applications Siddaganga Institute of Technology, Tumkur-
572103. E-mail: tmkiran@yahoo.com

“MANAGING INTELLECTUAL PROPERTY RIGHTS IN
SOFTWARE ENGINEERING”

 T. M. Kirankumar

ABSTRACT: Managing Intellectual Property is about using Intellectual Property Rights (IPRs) to protect an innovative concept
in order to produce commercial advantage software. Software engineering can be viewed as IPR's from both ethical and legal
perspectives. As systems are deployed into real-world use, legal issues of intellectual property rights and liability will play an
increasing role in shaping the industry. This paper develops a conceptual framework for the legal issues affecting intellectual
property rights and liability of software engineering products. IPR’s protection legislation has carried on at a speed never before
known, but in judicial practice, there are still a lot of issues worth exploring in software infringement claim.

Keywords: Intellectual Property Rights, Copyright, Patents , Liability .

1. INTRODUCTION
Information technology has changed the economics of
production and distribution of information products. But
some Intellectual Property Right (hereafter,IPR) problems
aroused with the prosperity of information technology.
Especially in the software industry, software piracy is very
popular. Huge increase in claims of private ownership of
software intellectual property, and intellectual property
regulations apply to more types of entities, are more
restrictive of what may be done with those items to which
they apply, and are longer lasting than ever before.
Presumably never before in the history of intellectual
property rights one could have observed within such a short
period of time, as a decade or so, such an enormous gain in
their economic importance. Taking patents as potentially
most important and relatively easy to monitor form of
intellectual property rights (IPRs), their number, for instance
in the United States of America (USA) doubled from 1988
to 1998 to 160,000 patents and 260,000 patent applications
[1]. In the European Patent Office the number of patent
applications increased from 79,000 in 1995 to 140,000 in
the year 2000, i.e. by 77 percent, with upward tendency [2].
Interesting and impressive are also figures on royalties paid
for patent licenses in the USA, which increased from US$3
billion in 1980 to 15 billion in 1990, only to exceed the
magic mark of US$100 billion in 1997; [3] or, for instance,
the fact that commodities constituted 62 percent of the
market value of the manufacturing industry in the USA in
1980, but less than 30 percent in 1998. For businesses that
sell products or services on cutting-edge technologies that
figure, for instance in Japan, are even less than 20 percent
[4] of these more than 1,000 for computer software.

Economic activity is carried out within a legal
framework created and enforced by government. For private
industry to invest in new technology it needs to have clearly
defined ownership to make a profit. The other side of rights
is responsibility - the liability incurred in using and selling
the products of technology. Industry must also be able to
manage the risk entailed by liability. The legal system of
intellectual property rights and liabilities profoundly affects
the economic viability and course of new technology.

2. INTELLECTUAL PROPERTY RIGHT
Intellectual property stems from the concept of assigning
people property rights to their creations of intellect. These
rights are very similar to rights in real property, such as real
estate. These rights include the ability to buy, sell and
license their property, the ability to use the property
themselves, and the rights to prevent others from using the
property without permission. From a utilitarian viewpoint,
this concept is based on the economic theory that private
ownership causes the most efficient use of resources in a
free market system [5]. From a moral viewpoint, this concept
is influenced by the Lockean notion that people are entitled
to the fruit of their labor-including the labor of their minds
[6]. Intellectual property rights are the building blocks for
managing intellectual property they are a collection of
registrable and unregistrable rights, which have different
but sometimes overlapping uses. IPR includes patents,
registered designs, unregistered design, Right, copyright,
database right, semiconductor design right, registered
trademarks, unregistered trademarks, domain names and
confidential information.

(A) Copyright

 Copyrights provide property rights to authors and creators
of artistic works. The subject matter of copyright has been

mailto:tmkiran@yahoo.com

142 INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND KNOWLEDGE MANAGEMENT

expanded to cover most all-creative works. Most important
is that a copyright covers the expression of an idea but not
the underlying idea itself. Copyrightable works are created
by writing a story on paper, recording a song, or writing a
file of source code. Without copyright, there would be no
financial incentive to create works, since others could
simply copy and sell the creation. The copyright arises
automatically once the work is recorded on a permanent
medium (paper, magnetic tape or disk drive), and no
copyright statement or notice is required. A copyright is
enforceable for the author’s life, plus 50 years.

(B) Software Patents

Governments have long known that advancing public
knowledge of technology supports the common wealth.
The question is how to encourage private enterprises, who
would normally keep their technological advances secret
for competitive advantage, to divulge their technology to
the public domain [7]. The patent system provides a tradeoff,
in that if an inventor fully divulges how to practice his
invention, the government will allow the inventor to
exclude others from practicing his invention for a limited
period. When this period of enforceable exclusion ends,
everyone may Practice the invention. The inventor
Exchanges secrecy for temporary rights to government
backed enforcement.

A patent covers an invention, which is simply a process
or apparatus for solving a problem. Patents cover ideas of
practical utility, whether it is a new pharmaceutical drug or
a mechanical mousetrap. However, abstract ideas and laws
of nature are not patentable, as they are held to be
fundamental truths or manifestations of nature, and hence
free to all persons and reserved exclusively to none
(Diamond v. Chakrabarty, 447 U.S. 303,309(1980)).
Especially basic tools of science such as manipulations of
mathematical formulae are free to all persons and hence not
patentable.

3. COPYRIGHT VERSUS PATENT
The common view on copyright versus patenting is that
copyright protects the 'expression' of an idea, while a patent
protects the “idea itself”. An ‘idea’ is here understood to
include a perspective on a functional application [8]. An
intriguing case occurs when both, orthogonal mechanisms
are applicable to protect the same artifact. The first line of
defense is to use copyright to protect owner of the expression
(which is an embodiment of invention) against IPR
violations.

The second line of defense is to patent specific ideas.
Since legal procedures involving patents imply significant
legal risks and associated costs, it will be preferable to use,
in case of a perceived violation, the first line of defense
(copyright) whenever possible.

This combined usage of copyrights/patents is only
relevant for a patent holder who actually exploits the
inventions described in his patents. He can only do so by
producing embodiments and these are in many cases
susceptible to copyright violation. A patent holder, who
does not own embodiments of inventions described in the
patents he owns, cannot resort to copyright protection. This
implies that in standard case for which the patent system
has been setup, patents and copyright protection go hand
in hand.

Copyrighting is an indispensable tool because
copyright violation is often easier to establish than patent
infringement. However, patent protection is unavoidable
in all cases where copyright protection falls short. This
standard case does not seem to correspond with the current
practice of software protection. Rarely, holders of software
patents want to enforce a monopoly on the production and
delivery of the inventions described in their patents, but
instead they prefer to use copyright to protect one specific
embodiment. It is this strange situation where the practice
of software patenting strongly departs from Philosophical
background of patent system that leads to optical illusion
that copyrighting suffices. Patents are intended to create
temporary monopolies, but in practice copyrights are
misused to create such software monopolies. Given the long
duration of copyright protection, this gives undesired and
lengthy protection to pioneers in the market. The Key
problem is excessive length of copyright protection in
combination with the fact that copyright protection has not
been designed for creating economic monopolies.

4. HISTORY OF SOFTWARE PROPERTY
RIGHTS

In the early history of software development, the courts
took the position that patents did not apply to software.
The courts’ view was that computers simply used
mathematical algorithms, which if viewed as mental
processes are not patentable (Gottschalk v. Benson 409 U.S.
63 (1972); in this case a method for converting BCD
numerals into binary numerals was found not patentable).
Therefore the only way to protect computer code was with
trade secret laws and copyright.

For trade secret laws to protect your invention, you
must proactively work to keep it secret. Further, your
invention needs to be something not easily discoverable.
Therefore, most trade secrets tend to be production methods,
where competitors cannot fathom from the end product how
it was made. In contrast, computer executable code is fairly
easy to disassemble and comprehend. Therefore, software
developers have rarely been able enforce trade secret
protection. More often they sought to protect their code
with copyright law.

“MANAGING INTELLECTUAL PROPERTY RIGHTS IN SOFTWARE ENGINEERING” 143

However, copyright only protected the written
expression. It did not protect any of the underlying ideas
encompassed by the software. Anyone could disassemble
your code, see how it worked, and then write their own code
to perform the same function as your code. As time passed,
people tried to stretch copyright protection to cover more
than simply the written expression. This led to several of
the “look and feel” cases, where courts decided that
copyright protected not only the code, but the “structure,
sequence, and organization” of the program

5. THE SOFTWARE LIFE CYCLE
In Software engineering, the software life cycle is a frequently
used manner of organizing the software development
process. Figure [1] shows a strongly simplified version of
the life cycle taken from a standard textbook [9]. It consists
of the following phases:

 • Requirements engineering: Collect the requirements
and expectations from the future owners and users
of the system.

 • Design: Translate the requirements in a
specification that describes the global architecture
and the functionality of the system.

 • Implementation: Build the system, and
transforming the design into software source code.

 • Testing: Test that the implemented system
conforms to the specification.

 • Maintenance: Install, maintain and gradually
improve the system.

It should be emphasized that the software life cycle
covers design and construction of a software product as
well as its use. Each phase contains a Validation and
Verification (V&V) sub-phase in which the quality of the
deliverables of that phase are controlled. Also note the
backward arrows that make this into a real “cycle”: it is
possible to discover in later phases that decisions made in a
previous phase have to be revised.

Figure 1:

We will now proceed in three steps. First, a defensive
Patent-aware Software Life Cycle is sketched that ensures
that the software development organization does not
infringe patents of third parties. Next, a more offensive
Patent-based Software Life Cycle is described that also
considers the options to file patent applications for
knowledge that has been generated in each phase of the life
cycle. Finally, the IPR-based Software Life Cycle extends
the previous one to all IPR options: secrecy, copyrights
and patents.

(A) The Patent-based Software Life Cycle

It is, however, possible to go one step further. In Figure [2]
we sketch a Patent-based Software Life Cycle in which yet
another sub-phase has been added that performs patent
applications whenever possible. We conjecture that this
strategy is only available to the software development
organizations with the deepest pockets. For each phase now
further questions apply, such as

• Does this phase generate patentable knowledge?

• Should we file a patent application for this
knowledge?

• Are there other means to avoid that this knowledge
generates an advantage for our competitors?

In many large software development organizations there
exist “Chinese walls” between software developers and
patent attorneys. This is not only the case for large
commercial organizations but also for large open source
projects like the Apache Foundation. The rationale being
that the less software developers know about patents the
stronger the position of the organization is in legal disputes.
Implementation of the Patent-based Software Life Cycle
may require similar measures. Of course, such measures
completely defeat one of the primary goals of the patent
system, i.e., knowledge dissemination.

Figure 2:

144 INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND KNOWLEDGE MANAGEMENT

 These extended software life cycles already raise many
fundamental questions that are not easy to answer:

• Is it possible to use these extended software life
cycles in such a way that they comply with the
major patenting systems worldwide?

• How can the software engineering knowledge that
is hidden in the patent data bases made accessible
for software engineers?

6. LIABILITY
In contrast to intellectual property rights, where the Practice
of software engineering principles could lead to legal
ambiguity. In particular, by contributing to the elevation
of software development from an art-form to a professional
engineering discipline.

The Anglo-Saxon common law (tort law) maintains that
Persons who are injured by the acts of others deserve to be
compensated for their injuries. A legal framework which
provides clear delineation of the standards and
Compensations greatly advance social and economic

Transactions. Not knowing who will be held responsible
for an act is worse than knowing exactly who will be blamed.
A party that knows they are at risk can do several things
work to reduce those risks, transfer the risks to another party
through contract, or insure against those risks. If parties do
not know their risks of liability, they will over-or
underinsure, or avoid the market altogether. Liability can
arise through many acts, including intentional acts,
negligence, and product liability. For software engineering,
negligence and product liability are the most important
kinds of liability.

(A) Negligence
Negligence involves unintentional but foreseeable harm.

Negligence has four basic elements: a duty of care, a
breach of that duty, a causal link between that breach of
duty and the injury, and an injury. Each of these elements
has standards and levels of analysis, based on the act and result.

Foreseeability ties the actor's duty to potential injured
Parties. Breach of duty is a positive act which the actor
Performs which could foreseeable cause harm through
Causal links. In the case of software writing, it could be the
coding and distributing of a program that has not been fully
tested, or could have side effects, which the coder should
have foreseen. Injury is harm done to a person or their
property. Injury is usually measured by the damage to the
injured person; the purpose of compensation is to return
the injured person; the purpose of compensation is to return
the injured party to their state before the injury. Injury can
also be economic. If a software system causes a brokerage
firm to lose money through faulty advice, the brokerage
may have a case. Therefore most software contractors

currently explicitly state in their agreements that they will
not be responsible for any loss of business resulting from
use of the software system.

(B) Product Liability

Product liability has a different standard than negligence.

Product liability only applies to products, not services.
However, several court cases have held that software is a
product, and therefore strict liability may apply[10]. Product
liability uses the theory of strict liability, which does not
consider whether the vendor acted reasonably. If the product
was sold in a defective or unreasonably dangerous
condition, and the user was injured while using the product
for its intended use, the vendor will be held liable. If a
software producer develops a computer controlled braking
system for a vehicle, and a bug in the software causes the
brakes to fail, the producer will be held liable no matter
how carefully he debugged the software.

There are many reasons for this rigid result. As described
earlier, the risk needs to be assigned somewhere, and the
Manufacturer seems the best choice. The manufacturer is in
the best position to prevent such defects in its product.
Holding it strictly liable will motivate it to thoroughly test
Its products. Further, proving negligence in manufacturing
is often extremely difficult and expensive for the injured Party.

An injured party may sue any person in the chain of
distribution or manufacture of a product. For example, if
Company A is selling software applications produced with
a function library from Company B, and the application
was dangerously defective due to a bug in the function
library, someone who is injured may sue Company B, who
produced the defective function library, or Company A, who
used the defective function library in its application.
However, if Company A does get sued, it may turn around
and sue Company B for the damages it pays out, assuming
that it can prove that the function library, not Company A’s
application, was defective. Also Company A would need to
show it could not have reasonably found the defect during
the development of its application. If Company B were
found responsible, it would compensate Company A for the
damages it paid to the injured party.

Today, software engineering is more of an art than a
scientifically based engineering discipline. It is rare for
rigorous functional specifications to be given as
requirements for software applications or software
components. This is in contrast to other engineering
disciplines where, for example, an aircraft engine is specified
in terms of a number of unambiguous parameters such as
thrust, weight, fuel consumption, and maximal time between
maintenance procedures. Even the bolts holding together
an aircraft frame are specified in terms of weight,thread
specifications, and breaking strength. Because software is
typically specified in a way that is ultimately ambiguous, it

“MANAGING INTELLECTUAL PROPERTY RIGHTS IN SOFTWARE ENGINEERING” 145

can be difficult for an application developer to prove that
components developed by any party earlier in the chain of
manufacture were defective.

7. CONCLUSION
Engineers have always known that innovation is important,
and that patents protect their inventions. Software engineers
know that the programs they write automatically protected
by copyright. And accountants are rapidly becoming aware
of the value os all such intellectual property rights, even to
extent of a few forward looking companies putting IPR'S
on their balance sheet as assets. Changes to law tend to lag
changes to society by a number of years. It takes time for
disputes involving new concepts to work though the courts
and effect changes to the law. But knowing the legal issues
can greatly assist developers of cutting-edge technology.
The law will evolve to shape the area, and the area will
shape the law. As Software engineering systems convert
software production from an art to an engineering discipline,
clearer lines can be set for responsibility and liability of
final products. System specifiers, domain theory producers,
and the application generators themselves will be held to
professional standards for quality, expectations and
answerability. Understanding how liability will be
determined, and what can be done to minimize or shift
liability, will encourage the software industry to accept and
embrace this new engineers. In this paper, I have outlined
some of the important open issues in managing IPR’S for
software engineering, as we engineer critical systems for
the next millennium.

REFERENCES
[1] Rivette and Kline, Rembrandts in the Attic-Unlocking the

Hidden Value of Patents, Boston 2000, pp. 4.

[2] According to the Recently Published Statistics of the
European Patent Office.

[3] Cf. Berman, “The Emergence of an Invisible” Asset Class,
in: Berman, Hidden Value: Profiting from the Intellectual
Property Economy, London 1999, pp. 12; cf. Also Rivette
and Kline, op. cit., pp. 6.

[4] Kondo, “Roles of the Intellectual Property Rights System in
Economic Development in the Light of Japanese Economy”,
AIPPI Journal of the Japanese Group January 2000, pp. 28.

[5] R. Posner, Economic Analysis of Law, Fourth Edition, Little,
Brown, and Company, Boston, MA, 1992.

[6] J. Hughes, “The Philosophy of Intellectual Property”,
Georgetown Law Journal 77, No. 2, December 1988,PP
287-366.

[7] E. Kitch and H. Perhan, “Legal Regulation of the Competive
Process”, The Foundation Press, NY, NY, 1989, pp.
365-902

[8] Bergstra J A and Klint P, About ‘Trival’ Software Patents:
The Isnot Case, Science of Computer Programming , 16 (3)
(2007) 264-285.

[9] H. van Vliet , Software Engineering: Principles and Practice.
Wiley, Decond Edition, 2000.

[10] L. Levy and S. Bell, “Software Product Liability:
Understanding and Minimizing the Risks”, Boa1t Hall School
of Law Review, Spring 1990.

