
International Journal of Information Technology and Knowledge Management
January-June 2012, Volume 5, No. 1, pp. 85-88

1 Department of Computer Science & Engineering, Techno India
NJR Institute of Technology, Udaipur
E-mail: ravisuncity@gmail.com,

2 Department of Computer Science & Engineering, Central
University of Rajasthan, Kishangarh, Ajmer
E-mail: ravijee82@gmail.com

MALWARE DETECTION USING DATA
MINING TECHNIQUES

Raviraj Choudhary1, and Ravi Saharan2

ABSTRACT: Anti-virus systems traditionally use signatures to detect malicious executables, but signatures are over fitted
features that are of little use in machine learning. Other methods seek to utilize more general features, with some degree of
success. Through this project, we presented a data mining approach that conducts an exhaustive feature search on a set of
computer viruses. Data mining methods detect patterns in large amounts of data, and use these patterns to detect future instances
in similar data. We can also use classifiers to detect malicious executables. A classifier is a rule set, or detection model, generated
by the data mining approach that was trained over a given set of training data.

Keywords: Malicious Executable, Signature, Data Mining, Classifier.

1. INTRODUCTION
There are many approaches used for detecting malicious
program. But every year thousands of new viruses are found
for that traditional approaches are not sufficient to detect
those files. To address this problem, we explore solutions
based on machine learning and not strictly dependent on
certain viruses. The term virus is commonly used for
malicious code, but for clarity reasons, we will use the term
malicious code in further discussion, since it is relevant for
all kinds of malicious code, such as viruses, worms, and
Trojan horses.

Malicious software is becoming a major threat to the
computer world. The general availability of the malicious
software programming skill and malicious code authoring
tools makes it easier to build new malicious codes. Recent
statistics from Windows Malicious Software Removal Tool
(MSRT) by Microsoft shows that about 0.46% of computers
are infected by one or more malicious codes and this number
is keep increasing [1].

Moreover, the advent of more sophisticated virus
writing techniques such as polymorphism [2] and
metamorphism [3] makes it even harder to detect a virus.
The data-mining framework automatically found patterns
in our data set and used these patterns to detect a set of new
malicious binaries [4].

Our aim is to develop a more systematic and efficient
approach in building virus detection model. In first section

Method we present whole model for select top L feature
from malicious data set. We generate a data set of malicious
programs and disassemble all files.

2. MALWARE TAXONOMY

Malware is a piece of code which changes the behavior of
security sensitive applications, without a user consent and
in such a way that it is then impossible to detect those
changes using a documented features of the application.
Fig. 2 shows the taxonomy of malware by william [9].

Trap Doors: It is a secret entry point into a program
that allows someone that is aware of the back door to gain
access without going through the usual security access
procedures. This usually is done when the programmer is
developing an application that has an authentic procedure,
or a long setup, requiring the user to enter many different
values to run the application.

Logic Bomb: A logic bomb is a piece of code
intentionally inserted into a software system that will set of
a malicious function when specified conditions are met.
Logic bomb code is embedded in some legitimate program
that is set to explode, when certain condition are met.

Trojan Horse: A Trojan horse is malware that appears
to perform a desirable function for the user prior to run or
install but instead facilitates unauthorized access of the
user’s computer system. Trojans are hidden in programs
which appear useful. We visit some site to download a
program and then run the program now our system is
infected.

Virus: A virus is a program that can infect application
programs by modifying them. Modification includes a copy
of the virus programs, which can infect other programs.

mailto:ravisuncity@gmail.com
mailto:ravijee82@gmail.comMALWARE

86 INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND KNOWLEDGE MANAGEMENT

Worms: A computer worm is a self-replicating malware
computer program. It uses a computer network to send copies
of itself to other nodes (computers on the network) and it
may do so without any user intervention.

3. FEATURE DETECTION APPROACH
FROM VIRUSES THROUGH MINING

3.1 Method

In this paper we present an virus detection approach through
data mining. For that we used some virus files from corpus
data set and some viruses generate from vcl32 virus kit.

First of all we take 2000 virus files from corpus data set
and vcl32 virus generator. Then through IDpro
disassembler, disassemble all virus file and generate ASM
files from those. In a disassembler, assembly instructions
are organized into basic blocks. We make logic assembly
and abstract assembly from those files. Disassembler will
generate a label for each basic block automatically. We
believe that basic block capture the structure of instruction
sequences and we process the instructions and make basic
blocks. That code is “logic assembly” code [5]. Each
assembly instruction consists of opcode and operands. We
use only opcode and ignore the operands and prefix because
that say behavior of program. The resulting assembly code
is called “abstract assembly” [5]. Final abstract assembly as
show below

Example of abstract assembly

3.2 Major steps

1. Make virus data sets.

2. Disassemble virus files using any disassembler.

3. Generate abstract assembly opcode.

4. Feature selection algorithm.

4. FEATURE SELECTION

 The features for our classifier are instruction associations.
To select appropriate instruction associations, we use the
following two criteria:

1. The instruction associations should be frequent in
the training data set. If it occurs very rarely, we
would rather consider this instruction association
is a noise and not use it as our features.

2. The instruction associations should be an indicator
of malicious code.

To satisfy the criteria, we only extract frequent
instruction associations from training dataset. Only frequent
instruction associations can be considered as our features.
We use a variation of Apriori algorithm to generate all three
types of frequent instruction associations from abstract
assembly. One parameter of Apriori algorithm is “minimum
support” [5]. It is the minimal frequency of frequent
associations among all data. More specifically, it is the
minimum percentage of basic blocks that contains the
instruction sequences in our case. Normalized count is the
frequency of that instruction sequence divided by the total
number of basic blocks in abstract assembly. We can also
use N gram approach to find feature set from that data [6].
Then select top L features as our feature set. For one
executable in training dataset, we count the number of basic
blocks containing the feature, normalized by the number of
basic blocks of that executable. We process every executable
in our training dataset, and eventually we generate the input
for our classifier as like Naive Bayes, Ripper[8].

Following Steps are Shown Basic Architecture

Step 1: Disassemble all files and generate abstract assembly.

Step 2: Find frequency of each instruction association (IA)
according Type 1 and 2

Step 3: Sort all instruction sequence and select top 10
sequences of length k.

MALWARE DETECTION USING DATA MINING TECHNIQUES 87

Step 4: Take ith no. of training files (virus and benign) and
find frequency of each IA at block level.

Step 5: Make table of selected IA frequencies from training
files.

Step 6: Repeat step 4 and 5 for Type 1, 2 and length 2, 3 IA.

4.1. Algorithm

Find the frequent itemsets: the sets of items that have
minimum support

INPUT: Set of virus files (V)

OUTPUT: Set of top instruction sequences (L).

In order to generate set of instruction sequences we
have set of virus file. In each virus file we have no. of basic
blocks. Form the basic blocks occurrence of instruction
sequences is calculated, which is called as instruction
association. This algorithm repeats until all set of virus file
encountered. Finally we select top L sequences which are
called as top L virus features.

Following are the basic steps for generating top L
instruction sequences.

1. For (each virus file Vi in V) do

2. For (each basic block Bij in Vi) do

3. Record all sequences of length sl found in Bij (with
out repetition)

4. Increase count of all instruction sequences.

5. End For

6. End For

7. Select top L sequences.

5. EXPERIMENTAL SETUP
Virus data set:

(i) 1500 files from corpus data set [7]

(ii) 500 files from vcl32 generator

IDA Pro: Disassembler to generate ASM file from
malicious files

Virus Code: ASM file of any virus file

Opcode selector: select opcode from asm files and make
logic assembly and abstract assembly.

Abstract assembly: Opcode of all virus file as per basic
blocks.

In above fig virus files are generated from VCL32 and
corpus data set. Through Idpro disassembler we generate
instruction code of those files. We present whole model for
select top L feature from malicious data set. We generate a
data set of malicious programs and disassemble all files.
Then we use opcode selector for refine virus code and
generate abstract assembly.

5.1. Results

(a) Model Trained by Neural Network Classifier
Following results are comparison between 500 files and
200 files trained by NN model. Graph shows better results
for NN model which is trained by 500 files as compared to
NN model trained by 200 files. From the help of Graph it is
concluded that NN model trained by more files produces
better results.

88 INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND KNOWLEDGE MANAGEMENT

(b) Model Trained by SVM Classifier

Following results are comparison between 500 files and
200 files trained by SVM model. Next graph shows better

results for SVM model which is trained by 500 files as
compared to SVM model trained by 200 files. From the
help of graph it is concluded that SVM model trained by
more files produces better results.

6. CONCLUSION
We implemented a feature search method that focuses on
selecting features that are applicable to different families of
viruses. This ensured that our classifier does not rely on
signatures. In experimental testing our method achieved
better performance as compared to some of older virus
detection techniques. By using both SVM and NN models,
the selected features which are used by the classifier
produces overall support within the data set. This indicates
that our feature search method produces features which are
more useful while detecting new unseen viruses.

We also introduced an evaluation method for virus
classifiers that tests more convincingly its ability to detect
new viruses. Our results show that system which uses family
non-specific features performs better results. In future work
we propose focusing on reducing the false positive rate, by
using a large number of benign files, or by training our
classifier using a cost matrix and setting a higher cost to
misclassifying negative examples. This would involve by
using a set of older viruses in the training set and a set of
more recent ones in the test set.

REFERENCES
[1] Microsoft Antimalware Team, “Microsoft Security

Intelligence Report (January - June 2007)”,

[2] C. Nachenberg, “Computer Virus-Antivirus coevolution”,
Communications of the ACM, 40, No. 1.

[3] P. Szor and P. Ferrie, “Hunting for Metamorphic”, in 11th
International Virus Bulletin Conference, 2001.

[4] Data Mining Methods for Detection of New Malicious
Proceedings of the 2001 IEEE Symposium on Security
and Privacy Page: 38 Year of Publication: 2001 ISSN:
1081-6011

[5] “Efficient Virus Detection Using Dynamic Instruction
Sequences Jianyong Dai, Ratan Guha”, Joohan Lee Journal
Of Computers, 4, No. 5, MAY 2009. University of Central
Florida.

[6] A Feature Selection and Evaluation Scheme for Computer
Virus. This Paper Appears in: Data Mining, 2006. ICDM
'06. Sixth International Conference on Publication Date:
18-22 Dec. 2006 on page(s): 891-895, ISSN: 1550-4786,
ISBN: 0-7695-2701-7 INSPECAccession Number:
10222296 Digital Object Identifier:10.1109/ ICDM.2006. 4
Current Version Published: 2007-01-08.

[7] Vx heavens. http://vx.netlux.org/lib.

[8] A Data Mining Framework for Building Intrusion Detection
Models. Wenke Lee; Stolfo, S.J.; Mok, K.W. Security and
Privacy, 1999 . Proceedings of the 1999 IEEE Symposium
on 9-12 May 1999 Page(s):120-132, Digital Object Identifier
10.1109/SECPRI. 1999.766909.

[9]. Network Security Essentials, by William Staling.

http://vx.netlux.org/lib

