
International Journal of Information Technology and Knowledge Management
January-June 2011, Volume 4, No. 1, pp. 323-328

X – LOG AUTHENTICATION TECHNIQUE TO PREVENT SQL
INJECTION ATTACKS

B. Indrani1 & E. Ramaraj2

Recent laws governing data privacy have led to great interest in enabling secure database services. Many software systems
include a Web-based component that makes Data available to the public via the Internet. These data stores are exposed to a
variety of Web-based attacks. The fear of SQL injection attacks has become increasingly frequent and serious.. This paper
presents a new Technique to protect Web applications against SQL injection. SQL-Injection Attacks are a class of attacks
that many of these systems are highly vulnerable to, and there is no known fool-proof defense against such attacks. In this
paper, we propose “X- Log Authentication Technique” to prevent SQL Injection Attacks the deployment of this technique is
by appending the vulnerability Guard and X-Log Authentication as well as Stored Procedure of application scripts additionally
allowing seamless integration with currently-deployed systems.

General Terms: Security, Validation, Verification.

Keywords: Database Security, World-Wide Application Security, SQL Injection Attacks, Runtime Monitoring

1. INTRODUCTION

The World Wide Web has experienced remarkable growth
in recent years. Many enterprise applications deal with
sensitive data. It is crucial to protect these applications from
targeted attacks. Compromise of these applications
represents a serious threat to organizations that have
deployed them, and also to users who trust these systems to
store confidential data. SQLIA’s constitute an important
class of attacks against web applications. Web applications
that are vulnerable to SQL attacks user inputs the attacker’s
embeds commands and gets executed [4]. The attackers
directly access the database underlying an application and
leak or alter confidential information and execute malicious
code [1][2]. The resulting security violations can include
identity theft, loss of confidential information, and
ultimately fraud. In some cases, attackers even use an SQL
Injection vulnerability to take control and corrupt the system
that hosts the Web application. The increasing number of
web applications falling prey to these attacks is alarmingly
high [3] Prevention of SQLIA’s is a major challenge. It is
difficult to implement and enforce a rigorous defensive
coding discipline. Many solutions based on defensive coding
address only a subset of the possible attacks. The Software
poses a particularly difficult problem because of the cost
and complexity of reworking on the existing code. Many
techniques rely on complex static analysis in order to find
potential vulnerabilities in the code. The evaluation of “X –
Log Authentication Technique has no code modification as

1Department of Computer Science, Madurai Kamaraj University,
Madurai

2Director of Computer Centre, Alagappa University, Karaikudi

Email: 2indra.msc@gmail.com

well as automation of detection and prevention. A recent
penetration testing study of more than 250 Web applications
concluded that at least 92% of Web applications are
vulnerable to some form of malicious intrusions [7] In fact;
SQLIA’s have been included in list of top 10 threats to web
applications [6]. A recent penetration testing study
performed by the Imperva Application Defence Centre
included more than 250 Web applications from e-commerce,
online banking, enterprise collaboration and supply chain
management sites and their vulnerability assessment
concluded that at least 92% of Web applications are
vulnerable to some form of malicious Intrusions [7]. Recent
U.S. industry regulations such as the Sarbanes-Oxley Act
pertaining to information security, try to enforce strict
security compliance by application vendors.

1.1. SQL Injection Attacks

Over the past several years, attackers have developed a wide
array of sophisticated attack techniques that can be used to
exploit SQL injection vulnerabilities. In a SQL injection
attack, an attacker attempts to exploit vulnerabilities in
custom Web applications by entering SQL code in an entry
field such as a login. If successful, such an attack can give
the attacker access to data on the database used by the
application and the ability to run malicious code on the Web
site. Attacks occur when developers combine hard-coded
strings with user-provided input to create dynamic queries.
Intuitively, if user input is not properly validated, attackers
may be able to change the developer’s intended SQL
command by inserting new SQL keywords or operators
through specially crafted input strings [5].

mailto:msc@gmail.comwell

324 B. INDRANI & E. RAMARAJ

1.2. Example of SQL Injection Attack

Tautology: A website uses this source(figure: 1), which
would be vulnerable to a SQLIA. For example, if a user
enters”’ OR 1=1—” and””, instead of Login Id =”doe” and
Password = “xyz”, the resulting query is: SELECT user_
info FROM users WHERE Login Id=’’ OR 1=1 —’ AND
Password =’.

The database interprets everything after the WHERE
token as a conditional statement, and the inclusion of the
“OR 1=1” clause turns this conditional into a tautology. (The
characters “—” mark the beginning of a comment, so
everything after them is ignored.) As a result, the database
returns the records for all users in the database. An attacker
could insert a wide range of SQL commands via this exploit,
including commands to modify or destroy database tables.
This particular exploit is a simple example of SQLIA.

1.3. Piggybacked Queries

SELECT acct FROM users WHERE Login Id =‘doe’ AND
Password = ‘ ’; Drop table users —; Piggybacked Queries
appends additional queries to the original query string the
first query is generally the original legitimate query, whereas
subsequent queries are the injected malicious queries. The
database treats this query string as two queries separated by
the query delimiter (“;”) and executes both. The second
malicious query causes the database to drop the user_ info
table in the database, which would have the catastrophic
consequence of deleting all user information

Protected sub login_btn()

cn.Open()

cmd = New SqlCommand(“select * from user_info where
LoginID=’” & t1.Text &”’ and Password=” & t2.Text &
“”, cn)

rd = cmd.ExecuteReader

If rd.Read Then

Response.Redirect(“User_Info.aspx”)

Else

Response.Redirect(“ErrLogin.aspx”)

End If

cn.Close()

cmd.Dispose()

rd.Close()

End sub

Fig. 1: Example VB Code in .NET Application

2. RELATED WORK

There are existing techniques that can be used to detect and
prevent input manipulation vulnerabilities.

2.1. Prepare Statement [8]

SQL provides the prepare statement, which separates the
values in a query from the structure of SQL [13]. The
programmer defines a skeleton of an SQL query and then
fills in the holes of the skeleton at run time. The prepare
statement makes it harder to inject SQL queries because the
SQL structure cannot be changed. To use the prepare
statement, we must modify the web application entirely; all
the legacy web application must be re-written to reduce the
possibility of SQL injections.

2.2. Instruction–Set Randomization[2][11]

SQL rand provides a framework that allows developers to
create SQL queries using randomized keywords instead of
the normal SQL keywords. A proxy between the web
application and the database intercepts SQL queries and de-
randomizes the keywords. The SQL keywords injected by
an attacker would not have been constructed by the
randomized keywords, and thus the injected commands
would result in a syntactically incorrect query. Since SQL
rand uses a secret key to modify keywords, its security relies
on attackers not being able to discover this key. SQL rand
requires the application developer to rewrite code.

2.3. Proxy filter [2] [10]

Scott and Sharp use a proxy to filter input and output data
streams for a web application although this technique can
be effective against SQLIA; it requires developers to
correctly specify filtering rules for each application input.
This step of the process is prone to human error and leaves
the application vulnerable if the developer has not
adequately identified all injection points and correctly
expressed the filtering rules. Like defensive coding practices
this techniques cannot provide guarantees of completeness
and accuracy.

2.4. Defensive Programming [11][12]

Programmers can implement their own input filters or use
existing safe API s that prevent malicious input or that
convert malicious input in to safer input. Some of these
approaches require programmers to learn the usage of API
s so, the programmers may not be willing to use them.
Improper usage OS APIs also leads to attack. It is difficult
to implement It address only a subset of the possible attack
The cost and complexity of retrofitting existing code.

2.5. Static Analysis [5][13]

Find Bugs and Lapse are static analysis tools that can detect
input manipulation vulnerabilities in java programs however
they ignore control flow or perform weak control flow
analysis and therefore do not recognize the existence of user

X – LOG AUTHENTICATION TECHNIQUE TO PREVENT SQL INJECTION ATTACKS 325

input filters in application precisely. As a result they may
generate many false positives. We can’t find out the
vulnerabilities introduced at the run time. Time consuming
if conducted manually.Wassermann and Su proposed an
approach that uses a static analysis combined with
automated reasoning. This technique verifies that the SQL
queries generated in the application usually do not contain
a tautology. This technique is effective only for SQL
injections that insert a tautology in the SQL queries, but
cannot detect other types of SQL injection attacks.

3. PROPOSED TECHNIQUE

This approach addresses SQLIA’s with runtime monitoring.
The key insights behind the approach are that (1) the source
code contains enough information to infer models of the
expected, legitimate SQL queries generated by the
application, and (2) an SQLIA, by injecting additional SQL
statements into a query, would violate such a model.
Proposed technique monitors the dynamically generated
queries with the Data model which is generated by X- Log
Generator at runtime and checks them for compliance. If
the Data Comparison violates the model then it represent
potential SQLIA’ s and prevented from executing on the
database and reported. For each application, when the login
page is redirected to our checking page, it was to detect and
prevent attacks without stopping legitimate accesses.
Moreover, our technique proved to be efficient, imposing
only a low overhead on the Web applications. This technique
consists of three filtration techniques to prevent SQLI’S.
We summarize the steps and then describe them in more

detail in subsequent sections.

Vulnerability Guard: Vulnerability Guard detects the
Wildcard characters or Meta characters and prevents the
malicious attacks.

X – Log Authentication: X-Log valuator validate from
X-Log Generator where the Sensitive data’s are Stored from
the Database, The user input fields compare with the data
existed in X-Log generator if it is identical then the query
is allowed to proceed.

Stored Procedure: Testing the size and data type of
input and enforce appropriate limit. Stored Procedures is
used to validate user input and to perform server side
validation. The safety of stored procedures depends on the
way in which they are coded and on the use of adequate
defensive coding practices. These Three input filtrations are
used to improve the scalability, performance and
optimization.

3.1. Identify Hotspot

Scan the application code to identify hotspots - points in
the application code that issue SQL queries to the underlying
database. This step performs a simple scanning of the
application code to identify hotspots. For the example .NET
in Figure 1, the set of hotspots would contain a single
element: the statement at line 4. (In .NET based applications,
interactions with the database occur through calls to specific
methods in the System.Data.Sqlclient namespace, 1 such
as Sqlcommand- . ExecuteReader (String))

Fig. 2: Proposed Architecture

The injection process works by prematurely terminating
a text string and appending a new command. Because the
inserted command may have additional strings appended to
it before it is executed, the malefactor terminates the injected
string with a comment mark “—”. Subsequent text is ignored
at execution time. In our work we contribute a vulnerability
Guard, to validate the user input fields to detect the wild

card character (patch file) and prevent the malicious attacker.
Transact-SQL statements will be prohibited directly from
user input. For each hotspot, build a wildcard model, to
check any malicious strings or characters append SQL
tokens (SQL keywords and operators), delimiters, or string
tokens to the legitimate command.

326 B. INDRANI & E. RAMARAJ

 Fig. 3: Functions Generated in Vulnerability Guard, X.Log Generator, X-Log Authentication and Stored Procedure

permissions to execute stored procedure without being
granted permissions to directly access the database objects
on which the stored procedure operates. Besides, stored
procedures should validate user input, and their parameters
should not be treated as executable code. In multi tiered
environments, all data should be validated before admission
to the trusted zone. Data that does not pass the validation
process should be rejected and an error should be returned
to the previous tier.

Implement multiple layers of validation. Precautions
you take against casually malicious users may be ineffective
against determined attackers. For example, data validation
in a client-side application can prevent simple script
injection. However, if the next tier assumes that its input
has already been validated, any malicious user who can
bypass a client can have unrestricted access to a system.

4. EVALUATION

The proposed technique is deployed and tried few trial runs
on the web server.

4.1. SQLIA Prevention Accuracy

Both the protected and unprotected web Applications are
tested using different types of SQLIA’s; namely use of
Tautologies, Union, Piggy-Backed Queries, Inserting
additional SQL statements, Second-order SQL injection and
various other SQLIA s. Table 1 shows that the proposed
technique prevented all types of SQLIA s in all cases. The
proposed technique is thus a secure and robust solution to
defend against SQLIA s.

3.2. Comparison of Data at Runtime
Monitoring

In figure 2: At runtime, If the user input is given to a web
application, the input is pattern matched with the patch file,
if there is any meta character concatenated with user input
then the vulnerability Guard check the dynamically
generated queries against the Wild card model and reject
queries that violate the model as a malicious user. If the
pattern matching is identical with the patch file then it is
termed as a legitimate user then the data comparison starts
from XML-Guard. From the vulnerability Guard the
validated user input fields compare with the X-Log
Authentication where the Sensitive data is stored, X- Log
Generator store the sensitive data from the valid database.
Here there is no Query validation occurs only the data’s
will be validated in XML-Generator. Then the validated data
send to the X-Log Authentication. If the script builds an
SQL query by concatenating hard-coded strings together
with a string entered by the user, As long as injected SQL
code is syntactically correct, tampering cannot be detected
programmatically. String concatenation is the primary point
of entry for script injection Therefore, we Compare all user
input carefully with X – Log Generator (Second filtration
method).If the user input and Sensitive data’s are identical
then executes constructed SQL commands in the Application
server.

3.3. Validation in Stored Procedure

 In figure 3: Stored procedures can enhance data access
security in several ways. Database users should be given

X – LOG AUTHENTICATION TECHNIQUE TO PREVENT SQL INJECTION ATTACKS 327

Table 1
SQLIA’S Prevention Accuracy

SQL Injection Types Un Protected Protected

1. Tautologies Not Prevented Prevented

2. Piggy Backed Not Prevented Prevented
Queries

3. Additional SQL- Not Prevented Prevented
Statement

4. Second-Order Not Prevented Prevented

5. Union Not Prevented Prevented

4.2. Execution Time – Runtime Validation

The runtime validation incurs some overhead in terms of
execution time at both the x – Log Authentication
comparison and SQL-Query based Validation. Taken a
sample website E –Transaction measured the extra
computation time at the query validation, this delay has been
amplified in the graph (figure: 4 and figure:5) to distinguish
between the Time delays using bar chart shows Data
validation performs better than Query validation. In Query
validation(figure:4) the user input is generated as a query
in script engine then it gets parsed in to separate tokens then
the user input is compared with the statistical generated data
if it is malicious generates error reporting. X-Log
Authentication technique (figure: 5) states that user input is
generated as a query in script engine then it gets parsed in
to separate tokens, Simultaneously the xml bringer transmit
the sensitive data from the database to the X – Log generator
then the user input is compared with the legitimate data if it
is malicious data, it will be prevented otherwise it allows to
access the database in the database server. Existing
techniques directly allows accessing the database in database
server after the Query validation. Current technique does
not allow directly to access database server because here
automatically the X-Log Authentication access the data’s
from database and compare with the user input if user data
is legitimate then it allows accessing the database in database
server.

Fig. 4: Execution Time based on XML Data

Fig. 5: Execution Time based on SQL Queries

5. DISCUSSION

Proposed technique was able to correctly identify all attacks
as SQLIA’s, while allowing all legitimate queries to be
performed and no false positives and no false negatives are
generated. Results are not compared with alternative
approaches against SQLIA’s because many of the automated
approaches that we are aware of, only address a small subset
of the possible SQLIA‘s. (For example, the one in [9]
focuses only on tautologies.) Such approaches would not
be able to identify many of the attacks in our test bed. As
for all empirical studies, there are some threats to the validity
of our evaluation, mostly with respect to external validity.
The results of our study may be related to the specific
subjects considered and may not generalize to other web
applications. To minimize this risk, we used a set of web
applications and an extensive set of realistic attacks.

6. CONCLUSION

The SQL Injection Attacks are extremely dangerous in
comparison to other types of Web-based attacks, because
the end result is data manipulation. SQL injection holes can
be easy to exploit, a novel technique against SQLIA’s. has
the web-application code implicitly contains a policy that
allows to distinguish legitimate and malicious queries. The
technique is fully automated and detects, prevents, and
reports SQLIA’s. This technique is used to detect and prevent
the SQLI flaw (wild characters & exploiting SQL
commands) in vulnerability Guard and prevent the malicious
attacker Transact-SQL statements will be prohibited directly
from user input. X-Log Authentication checks the user input
with valid database which is stored separately in X- Log
Generator then the validated user input field is Send to
Stored procedure Using stored procedures is to validate
user input for Testing the size and data type of input and
enforce appropriate limits. Stored procedure is used to
improve the performance of the server side validation This

328 B. INDRANI & E. RAMARAJ

proposed technique was able to correctly identify the attacks
that we performed on the applications without blocking
legitimate accesses to the database (i.e., the technique
produced neither false positives nor false negatives). These
results show that our technique represents a promising
approach to countering SQLIA’s and motivate further work
in this direction.

REFERENCES

[1] AMNESIA: Analysis and Monitoring for Neutralizing
SQLInjection Attacks William G.J. Halfond and Alessandro
Orso, College of Computing, Georgia Institute of
Technology, ASE’05, November 7–11, 2005.

[2] A Classification of SQL Injection Attacks and
Countermeasures: William G.J. Hal Fond and Alessandro
Orso, College of Computing, Georgia Institute of
Technology.Gatech.edu

[3] Eliminating SQL Injection Attacks - A Transparent Defence
Mechanism Muthuprasanna, Ke Wei, Suraj Kothari Iowa
State University, Ames, IA, USA SQL Injection Attacks
Prof. Jim Whitehead CMPS 183. Spring 2006, May 17,
2006.

[4] WASP: Protecting Web Applications Using Positive
Tainting and Syntax-Aware Evaluation William G.J. Hal
fond, Alessandro Orso, Member, IEEE Computer Society,
and Panagiotis Manolios, Member, IEEEComputer Society.
IEEE Software Engineering, 34, No.1, January/February
2008.

[5] “Top Ten Most Critical Web Application Vulnerabilities,”
OWASP Foundation, http://www.owasp.org/documentation/
topten.html, 2005.

[6] Web Cohort Inc., “Only 10% Web Applications Secured
against Common Hacking Techniques”, Stephen Thomas,
Laurie Williams. Using Automated Generation to Secure
SQL Statements Third International Workshop on Software
Engineering for Secure Systems(SESS’07), Pages 9-May
2007.

[7] G.Wassermann and Z. Su., “Static Analysis Framework for
Security in Web Application for Detecting SQL Injection
Vulnerabilities”, In Proceeding of the Conference, Pages
70-78, 2004.

[8] Stephen Thomas, Laurie Williams, “Using Automated
Generation to Secure SQL Statements Third International
Workshop on Software Engineering for Secure
Systems(SESS’07)”, Pages 9-May 2007.S.Boyd and
A.Keromytis: SQLrand: Preventing SQL Injection Attacks.
In Proceedings of the Applied Cryptography and Network
Security (ANCS), Pages 292-304, 2004.

[9] W. R. Cook, S. Rai, “Safe Query Objects: Statically Typed
Objects as Remotely Executable Queries”, ICSE 2005.

[10] D. Scott and R. Sharp, “Abstracting Application-level Web
Security”, In Proceedings of the 11th International
Conference on the World Wide Web (WWW 2002), Pages
396–407, 2002.Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T.
Lee, and S. Y. Kuo.

[11] “Securing Web Application Code by Static Analysis and
Runtime Protection”, In Proceedings of the 12th
International World Wide Web Conference (WWW 04), May
2004.

[12] SQL Injection Attack Examples based on the Taxonomy of
Orso et al.

[13] V. B. Livshits, “Finding Security Errors in Java Programs
with Static Analysis”, In Proceedings of the 14th Use nix
Security Symposium, Pages 271–286, Aug.2005.

http://www.owasp.org/documentation/

