
DNA COMPRESSION USING HASH BASED DATA STRUCTURE

Ateet Mehta1 & Bankim Patel2

DNA Sequences making up any organism comprise the basic blueprint of that organism so that understanding and analyzing
different genes within sequences has become an extremely important task. Biologists are producing huge volumes of DNA
sequences every day that makes genome sequence database growing exponentially. The databases such as EMBL, GenBank
represent millions of DNA sequences filling many thousands of gigabytes computer storage capacity and the databases are
doubled in size every 6-8 months. Hence an efficient algorithm to compress DNA sequence is required. Though there are
many text compression algorithms, they are not well suited for the characteristics of DNA sequences. There are algorithms
for DNA compression which takes advantage of repetitive nature of DNA fragments within the sequence where as few of the
other algorithms are written for the non repeated patterns within DNA sequences. In this paper, we represent an algorithm
which is based on hash based data structure to compress DNA sequences. The proposed algorithm performs equally well for
both repeated and non-repeated patterns within the DNA sequence.

Keywords: DNA Sequence, Hashing, Data Structure, Compression, Huffman Encoding, Arithmetic Coding

1. INTRODUCTION

DNA Sequences making up any organism represent the
basic blueprint of that organism so that understanding and
analyzing different genes within the DNA sequences has
become an extremely important task. Analyzing such
different types of sequences help in many areas like
customizing the medical treatment and therapy according
to the genetic attributes of specific human, discovering new
drug solutions etc. [1]. Hence DNA sequences play an
important role in medical research, disease diagnosis, and
the design and development of new drugs. [2]. Biologists
are producing huge volumes of DNA and Protein Sequences
every day. Genome sequencing projects are producing vast
amounts of biological data for different organisms and
storing them in databases. [3]. with almost every new
scientific publication in genetics and related sciences, a new
sequence is added and the rate at which the data is
accumulating is on the rise. Currently there are global
databases like NCBI, GenBank, and SWISS PROT storing
such biological data. These biological databases are growing
exponentially and compressing such data is important and
it helps not only in reduction of storage space but also in
exchanging data between systems through web services over
internet.

There are many text compression algorithms available
having quite a good compression ratio. But they have not
been proved well for compressing DNA sequences as the
algorithm does not incorporate the characteristics of DNA
sequences even though DNA sequences can be represented

Shrimad Rajchandra Institute of Management and Computer
Application, South Gujarat University, Gujarat, India

Email: ateet.mehta@gmail.com1, bankim_patel@srimca.edu.in2

in simple text form. DNA sequences are comprised of just
four different bases labelled A, T, C, and G (for adenine,
thymine, cytosine, and guanine respectively). T pairs with
A, and G pairs with C. Each base can be represented in
computer code by a two character binary digit, two bits in
other words, A (00), C (01), G (10), and T (11). At first
glance, one might imagine that this is the most efficient way
to store DNA sequences. Like the binary alphabet {0, 1}
used in computers, the four-letter alphabet of DNA {A, T,
C, G} can encode messages of arbitrary complexity when
encoded into long sequences. Shown in the figure 1 is how
the bases pairs with each other. Human genome contains
about 3 billion base pairs out of which 3% encodes proteins.
There are 25000 genes in human genome which can encode
nearly 100000 proteins.

Fig. 1

International Journal of Information Technology and Knowledge Management
July-December 2010, Volume 2, No. 2, pp. 383-386

mailto:mehta@gmail.com1
mailto:bankim_patel@srimca.edu.in2in

384 ATEET MEHTA & BANKIM PATEL

DNA sequences, however, are not random; they contain
repeating sections, palindromes, and other features that
could be represented by fewer bits than is required to spell
out the complete sequence in binary. [5]. A repeat pattern
could be abbreviated to say the binary equivalent of “six
times G” for instance, which would be a few bits shorter
than explicitly writing “GGGGGG” in binary. Similarly,
palindromes could be abbreviated in code relative to their
complementary pattern in the DNA sequence.

In computer science and information theory, data
compression or source coding is the process of encoding
information using fewer bits (or other information-bearing
units) than an unencoded representation would use, through
use of specific encoding schemes. [4]. Compression is useful
because it helps reduce the consumption of expensive
resources, such as hard disk space or transmission
bandwidth. Compressed data must be decompressed to be
used, and this extra processing may be detrimental to some
applications. Therefore, the design of data compression
schemes therefore involves trade-offs among various factors,
including the degree of compression and the computational
resources required to compress and uncompress the data.
Further some compression algorithms can introduce
distortion in data which are known as lossy compression.
Lossless compression algorithms usually exploit statistical
redundancy in such a way as to represent the sender’s data
more concisely without error. [4]. Lossless compression is
possible because most real-world data has statistical
redundancy. For example, in English text, the letter ‘e’ is
much more common than the letter ‘z’, and the probability
that the letter ‘q’ will be followed by the letter ‘z’ is very
small. Lossless compression exploits the repeats,
palindromes and patterns present in the digital data to reduce
the overall size.

2. RELATED WORK

The compression of DNA sequences is considered as one
of the most challenging tasks in the field of data
compression. [6]. Standard compression algorithms are not
able to compress DNA sequences. [11]. Rapid advancements
in research in the field of DNA sequence discovery has led
to a vast range of compression algorithms. The number of
bits required for storing four bases of any DNA sequence is
two. With the constant decrease in prices of memory and
communication channel bandwidth, one often doubts the
need of such compression algorithms. There are many text
compression algorithms implemented in various tools like
winzip, winrar, gzip, bzip2 but they cannot compress DNA
sequences. It is very well known that one of the main features
of DNA sequences is that they contain substrings which are
duplicated except for a few random mutations. For this
reason, most DNA Compressors are built to searching and
encoding these repeats. However, searching for repeated
patterns takes a long time and takes more memory. The

algorithms designed specifically to compress DNA
sequences assuming the frequent occurrences of repeated
patterns in DNA sequence may not efficiently compress with
non repeated patterns in the DNA sequences where as some
of the algorithms work well but built for short sequences.
Therefore, the results for these algorithms under the best
and worst case vary in a high degree.

There are several approaches for encoding of texts
which are Huffman Encoding, Adaptive Huffman Encoding,
Arithmetic coding, Arithmetic adaptive coding, Context Tree
weighted method etc. Algorithms designed for DNA
Compression like GenCompress, BioCompress, DNA
Compress, CTW+LZ, Cfact have achieved an approximate
compression ratio of 22% use the above mentioned
approaches. With BioCompress, at each step, the longest
factor beginning at the current position which matches with
a factor starting before is chosen. BioCompress-2 uses
arithmetic coding of order 2. Cfact performs in two pass in
that it looks for longest exact matching repeat and uses a
suffix-tree for finding the longest repeat. GenCompress
works on approximate repeats in which at each step, it looks
for the optimal prefix of the not yet encoded part of the
DNA sequence. It uses Hamming distance (v1) and edit
distance (v2) for approximate repeats. CTW+LZ is a
Combinaison of GenCompress and CTW uses Context Tree
Weighting method. DNACompress uses PatternHunter as
preprocessing. Found repeats are sorted in decreasing order
of size. Greedy approach of GenCompress and
DNACompress has not been proved well. DNAPack was
made using dynamic programming instead of greedy
approach and proved better than above mentioned
algorithms. Common components of most of DNA
compression algorithms are

• Finding the candidate repeat segments.

• Considering approximate repeats.

• Encoding of the repeat segments.

• Encoding of the non-repeat segments.

We have attempted to take another approach to present
a hash based data structure to compress DNA Sequences
which is a lossless compression algorithm and will get
compression ratio to be 75%. Another important feature of
our algorithm is that it compresses long sequences of
hundreds of mega byes long.

3. PROPOSED WORK

We use hash based data structure to compress DNA
sequences. As explained earlier, DNA sequence can consist
of four letters {A, C, T, G}. Let the set S represent {A, C, T,
G}. If m is the total elements in the set and n is the length of
the word that should be constructed using the set s, possible
words that can be generated would be mPn where element

DNA COMPRESSION USING HASH BASED DATA STRUCTURE 385

cannot be repeated. In case of DNA sequences, the bases
can be repeated. So the possible words of the length n with
m characters in the set S would be m^n where in any
character in the set can be repeated any number of times
within the word length n. Considering this, we build the
hash keys of word length=4 with no collisions within the
hash table. Each hash keys will be represented by single
character. We scan the whole DNA sequence and fragment
it in small DNA fragments of length=4 and hash this
fragment into hash table resulting in one character. The result
would be compressed DNA. Therefore, the algorithm
initially builds hash table and assigns unique character to
each of the hash keys and then scan entire DNA sequence
into small DNA fragments, hash it into a single character
finally resulted into compressed DNA.

ALGORITHM TO COMPRESS

begin

 let h be an empty hash table

 let c be a collection of single byte character codes.

 Let s be the set of {A,C,T,G}.

 Let seq be the DNA sequence, cseq be the compressed DNA
sequence.

 Initialize index by 1

 Initialize segment by length(seq)/4

 [step to construct hash table]

 repeat while i<=4 do

repeat while j<=4 do

repeat while k<=4 do

repeat while l <=4 do

 hashkey= substr(s,i,1) || substr(s,j,1) || substr(s,k,1) ||
substr(s,l,1);

 h[hashkey] :=c[n++];

end do

 end do

 end do

 end do

 [step to scan dna sequence in fragments and hash it within
hash table]

 repeat while index <= segment do

 cseq := cseq || h[substr(seq,index++,4)];

 end do

 append(seq,length(cseq)-mod(cseq,4)) to cseq;

end

Decompression is done exactly in the reverse manner
to compression. We scan the compressed sequence one
character at a time. This character is hashed in the hash table;
the key of the hash table for the particular character
represents the original 4 character fragment. Repeating this
process for the entire compressed sequence and adding these
fragments result in an original DNA sequence without any
loss of information.

ALGORITHM TO DECOMPRESS

Initialize index by 1

Let seq be the DNA sequence, dseq be the compressed
DNA sequence, h be the hashtable

repeat while index <=length(dseq) do

seq := seq || h.search(substr(dseq,index,1));

end do

end

Assume seq be the sequence having length=96 as shown
below.

ACAA GATG CCAT TGTC CCCC GGCC TCCT
GCTG CTGC TGCT CTCC GGGG

CCAC GGCC ACCG CTGC CCTG CCCG GTGG
CGTA ATGC TCAC GCAA GTTT

Therefore, logically it needs 96 bytes to store this
sequence in a text file. Normal text compression algorithm
like winzip supplied with Windows or zip, tar supplied with
UNIX cannot actually compresses this sequence. With the
proposed algorithm, sequence will be compressed by 75%
irrespective of the number of repeated or non-repeated
patterns within the sequence. We tested this algorithm on a
sequence database created in Oracle 10g Release 2 running
on Windows XP. The algorithm is implemented as a stored
procedure within Oracle Database. Machine has Pentium 4
processor with 1GB RAM, 2.80 GHz.

Following table shows execution timings with different
sequence sizes.

Table 1

Sequence Size Time in seconds

2.9 KB < 1 second

24 KB < 1 second

280 KB < 1 second

2.8 MB 1 second

28 MB 4 seconds

280 MB 62 seconds

While we execute this database stored procedure on any
of the DNA sequences having size in mega bytes, the whole
processing is done at a database layer. No data is pulled out
of the database for processing and bringing the results into
the database. Data fetching, compression of the sequences
and putting the compressed data all is done within the
database.

The algorithm is not built keeping the repetitive or non-
repetitive patterns in mind. It performs equally well
irrespective of the patterns within DNA Sequence. As shown
in the above table, it has been tested for sequence from few

386 ATEET MEHTA & BANKIM PATEL

kilo bytes to few hundreds of mega bytes. The algorithm
assumes the data within the sequence does not contain any
junk or invalid characters. In case if it is not sure, it is wise
to clean the sequence first for the invalid characters before
running this algorithm.

4. CONCLUSION AND FUTURE WORK

Standard text compression algorithm cannot compress DNA
sequences and there is need to develop compression
algorithms specifically for DNA sequences considering the
characteristics of DNA sequence being the collection of 4
bases {A,C,T,G} with many repeated and non repeated
patterns within the sequence. Though they are algorithms
designed for DNA sequences, some of them work well for
short sequences where as some of them work well where in
the sequences contains many repeated patterns. We
attempted to design compression algorithm for DNA
sequences which is lossless compression algorithm and will
compress to 75% irrespective of the repeating or non
repeating patterns within the sequence. The algorithm does
not depend on the size of the sequence and capable to
compress even larger sequences having sizing in hundreds
of MBs. The algorithm assumes the input sequence to have
valid characters. The algorithm does not account for the
repetitiveness of the fragments. So if the fragment within
DNA sequences appears to be AAAA…200 times, it would
be compressed to AAAA..50 times. (75% compression).
Algorithm can be extended to check if it finds such
fragments in which same base is being repeated for multiple
times, it can be compressed as base{n} where n is the
frequency of repetition.

REFERENCES

[1] Cynthia Gibas & Per Jambeck-Developing Bioinformatics
Computer Skills.

[2] S.C.Rastogi, P.Rastogi- Bioinformatics Methods and
Applications.

[3] David W. Mount- Bioinformatics: Sequence and Genome
Analysis.

[4] http://en.wikipedia.org/wiki/Data_Compression.

[5] L. Allison, L. Stern, T. Edgoose, and T. I. Dix. Sequence
Complexity for Biological Sequence Analysis. Computers
and Chemistry, 24(1):43–55, 2000.

[6] A. Apostolico and S. Lonardi. Compression of Biological
Sequences by Greedy Off-line Textual Substitution. In J.
A. Storer and M. Cohn, Editors, Proceedings Data
Compression Conference, Pages 143–152, Snowbird, UT,
2000. IEEE Computer Society Press.

[7] J. Bentley and D. McIlroy. “Data Compression with Long
Repeated Strings”. Information Sciences, 135:1–11, 2001.

[8] X. Chen, S. Kwong, and M. Li. “A Compression Algorithm
for DNA Sequences and its Applications in Genome
Comparison”. In Proceedings of the 4th Annual
International Conference on Computational Molecular
Biology (RECOMB-00). ACM Press, 2000.

[9] X. Chen, M. Li, B. Ma, and J. Tromp. DNACompress: Fast
and Effective DNA Sequence Compression. Bioinformatics,
18(12):1696–1698, 2002.

[10] National Center for Biotechnology Information. http://
www.ncbi.nih.gov.

[11] S. Grumbach and F. Tahi. A New Challenge for
Compression Algorithms: Genetic Sequences Inf. Proc. and
Management, 30(6):875–886, 1994.

[12] R. Karp and M. Rabin. “An Efficient Randomized Pattern-
matching Algorithms”. IBM Journal of Research and
Development, 31(2) : 249–260, 1987.

http://en.wikipedia.org/wiki/Data_Compression
www.ncbi.nih.gov

