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Abstract:  In this paper, restoration of images distorted by systems with noisy point spread functions and additive detection
noise has been considered. The Wiener filter is one of the well established linear filtering methods and is widely known for
its excellent performance in denoising the white noise. This filter is solution to the restoration problem based upon the
hypothesized use of a liner filter and minimum mean square error (MMSE) criterion. Image filtering algorithms are applied
on image to remove noise that is either present in the image during capturing or injected into the image during transmission.
Performance of Wiener filter in frequency domain for image restoration is compared with that in the space domain on
images degraded by white noise. It is also observed that the wiener filter having better performance for images corrupted by
white noise compared to other non- linear filters.
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1. INTRODUCTION

Restoration of images distorted by a system with a random
blur function has been studied in recent years. The
phenomenon of random blur describes an important class
of imaging systems- those in which the impulse response
function (or the transfer function) is random [1]. The
uncertainty of random blur may result from random
amplitude and phase fluctuations of the pupil function of
the optical system, due to such effects as optical propagation
through turbulence of dust particles on the lens. Random
blur may also result from random vibrations of the imaging
system relative to the object. Gaussian noise is an idealized
form of white noise, which is caused by random fluctuations
in the signal as shown in Figure 2.

The rest of paper is organized as follows. Section 2
describes the definition of digital image and pixel is shown.
It demonstrates original image and noised image. In section
3 discuss the different smoothing techniques. Section 4 & 5
demonstrates the results conducted and finally this paper is
concluded in section 6.

2. DIGITAL IMAGE DEFINITION

 A digital image a[m, n] described in a 2D described space
is derived from an analog image d(i, j) in a 2D continuous
space through a sampling process that is frequently referred
to as digitization [1]. The effect of digitization is shown in
Figure 1.

The 2D continuous image d(i, j) is divided into N rows
and M columns. The intersection of a row and a column is
termed a Pixel. The value assigned to the integer to the
integer coordinates [m, n] with m= {0,1,2,….M-1} and
n = {0,1 ,2,….N-1} is a[m, n].

We will consider the case of 2D, monochromatic, static
images [1, 2]. We have d(i, j) and n(i, j) represent the original
image and additive noise, respectively. The observed
degraded image x(i, j) is given by

x(i, j) = d(i, j) + n(i, j) (1)

The goal is to obtain a restored image y(i, j) from
x(i, j), in which y(i, j) should be equivalent to the original
image d(i, j) ideally.

Figure 1: (512 x 512) ‘Lenna’ Digital Image

The value assigned to every pixel is the average
brightness in the pixel rounded to the nearest integer value.
The process of representing the amplitude of the 2D signal
at a given coordinate as an integer value with L different
gray levels is usually referred to as amplitude quantization
or simply quantization [6].
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3. SUMMARY OF SMOOTHING ALGORITHMS

Denoising techniques have received a great deal of attention
in the field of image processing. A variety of smoothing
filters have been developed which include linear filters,
nonlinear filters and Fourier / wavelet transforms [3]. Image
denoising problem is equivalent to that of image restoration
when blurs are not included in the noisy image; their
properties and domain of application have been studied
extensively. We have:

3.1. Median filter

The Median Filter is performed by taking the magnitude of
all of the vectors within a mask and sorted according to the
magnitudes. It is based upon moving a window over an
image (as in a convolution) and computing the output pixel
as the median value of the brightness within the input
window. The Simple Median Filter has an advantage over
the Mean filter since median of the data is taken instead of
the mean of an image. The pixel with the median magnitude
is then used to replace the pixel studied. The median of a
set is more robust with respect to the presence of noise. The
median filter is given by

2 2
1 1( .......... ) (|| || ...... || || )N NFilter X X Median X X =  (2)

3.2. Average/mean Filter

The idea of mean filtering is simply to replace each pixel
value in an image with the mean (‘average’) value of its
neighbours, including itself. This has the effect of
eliminating pixel values which are unrepresentative of their
surroundings. Mean filtering is usually thought of as a
convolution filter. Like other convolutions it is based around
a kernel, which represents the shape and size of the
neighbourhood to be sampled when calculating the mean.
Often a 3×3 square kernel is used, although larger kernels
(e.g. 5×5 squares) can be used for more severe smoothing.
(Note that a small kernel can be applied more than once in
order to produce a similar but not identical effect as a single
pass with a large kernel.) [2].

3.3. Two Types of Wiener Filtering and it’s
Performance

We describe the principle of 2-D Wiener filters in the
frequency domain and in the space domain for the purpose
of restoration of an image degraded by white noise [8,9].

3.3.1. Wiener Filter in the Space Domain

If the output of the Wiener Filter is y(i, j), it is represented
by

( , ) ( , ) ( , )
N N

m N n N

y i j w m n x i m j n
=− =−

= + +∑ ∑ (3)

the weights of the Wiener filter, w(m, n), can be found by
minimizing.

2({ ( , ) ( , )} )j E d i j y i j= − (4)

Where is E denotes expectation. The solution for w(m, n) is
obtained in a vector form as

w = R-1 p (5)
Where
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These equations are known as the Wiener–Hopf
equations. The matrix R appearing in the equation is a
symmetric Toeplitz matrix [5]. These matrices are known
to be positive definite and therefore non-singular yielding a
unique solution to the determination of the Wiener filter
coefficient vector w(m, n).

So R(m, n) and p(m, n) correspond to the autocorrelation
function of x(i, j) and cross – correlation function of d(i, j)
and x(i, j), respectively, which are given by

( , ) [ ( , ) ( , )]R m n E d i j x i m j n= − − (6)

( , ) [ ( , ) ( , )]p m n E d i j x i m j n= − − (7)

Respectively.
1 1 2

0 0
{ ( , ) ( , )}

M M

I J
d i j y i j

− −

= =
−∑ ∑ However, in

practice, the following criterion

2

1
J

M
= (8)

is often defined instead of eqn (4) due to its easy
computation, and the solution in eqn (5) is obtained in this
case R(m, n) and p(m,n) are calculated as

Figure 2: Image with White Noise
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Respectively, from M x M images of d(i, j) and x(i, j)

The output of the wiener filter is obtained by eqn (3)
with the solution vector in eqn (5).

3.3.2. Wiener Filter in the Frequency Domain

The Wiener filter could be implemented in the frequency
domain by transforming the degraded image into the
frequency domain using Discrete Fourier Transform (DFT),
filtering and inverse transforming. In the frequency domain,
the wiener filter is given by [7].

( , )
( , )

( , ) ( , )
D

D N

P u v
H u v

P u v P u v
=

+
(11)

where PD (u,v) and PN (u,v) represent the power spectra of
d (i, j) and n (i, j), respectively. This solution is derived in a
similar way with that in the space domain. By minimizing

2[| ( , ) ( , ) ( , ) | ]J E D u v H u v X u v= − (12)

Where D(u,v) and X(u,v) represent the discrete Fourier
transforms (DFTs) of d(i, j) and x(i, j), respectively, the
solution is first obtained as

*

2
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Where * denotes complex conjugate. When n(i, j) is white
noise, the numerator reduces to

* *[ ( , ) ( , )] [( ( , ) ( . ) ( , )]E X u v D u v E D u v N u v xD u v= +
2[| ( , ) | ]E D u v=

( , )DP u v= (14)

And the denominator reduces to

2[| ( , ) | ] ( , ) ( , )D NE X u v P u v P u v= + (15)

Where PD (u,v) and PN(u,v) correspond to the power spectra
of d(i, j) and n(i, j), respectively. Thus eqn(13) results in
eqn (11).

The output of the wiener filter is given by

( , ) ( , ) ( , )Y u v H u v X u v= (16)

( , ) ( ( , ).y i t IDFT Y u v= (17)

Where IDFT in eqn(17) means the Inverse DFT.

4. RESTORATION RESULTS IN IDEAL CASE

We investigated the performance of different filters with
wiener filter and than two types of wiener filter in an ideal

case where original and noise images are known a priori.
We used 10 images in SIDBA, each of which has a size of
512 x 512 gray scales. A white noise was generated and
added to each images, resulting in the preparation of noisy
images for each image [3.] The results obtained by each
implementation of the two wiener filter on the degraded
images are shown in figure (4). The window size of wiener
filter in the space domain was set to 5 x 5. The SNR
improvement in dB is defined as

SNR Improvement [dB] =

10
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The phrase peak signal-to-noise ratio is ratio between
the maximum possible power of a signal and the power of
corrupting noise that affects the fidelity of its representation.
Because many signals have a very wide dynamic range,
PSNR is usually expressed in terms of the logarithmic
decibel scale. It has a lower PSNR (a higher PSNR
would normally indicate that the reconstruction is of higher
quality) [4].

5. RESTORATION COMPARISON

Figure 4: Restoration Comparison of ‘Lenna’ Image
(SNR = 0[dB])

5.1. Simulation Results
Table 1

Restoration Comparisons

Filter’s name Mean Std MSE PSNR

Average 124.1375 45.7045 0.0031576 74.1919

Median 124.482 45.1841 0.002914 74.748

Wiener (space domain) 124.0136 42.5885 0.0069597 75.42

Wiener (frequency domain) 124.4123 42.7868 0.0067237 75.9093

Table 1 shows a performance comparison of the
denoising methods (Average filter, Gaussian filter, Median
filter, Wiener filter in space domain, Wiener filter in
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frequency domain) in PSNR. Wiener filter in frequency
domain have the highest value of PSNR. It gives the best
performance for all images and noise levels.

6. CONCLUSION

The root mean – square errors (RMS) associated with filters
are shown in figure. For this specific comparison, the wiener
filter generates a lower error than any of the other procedures
that are examined here. An image is degraded by white noise;
the wiener filter is more suitable for restoration than a variety
of smoothing filters such as the Gaussian, median, mean.
In an ideal case where both the original and noise images
are known, it has been found that the Wiener filter in the
frequency domain is more effective than that in the space
domain.

7. SCOPE FOR FUTURE WORK

There are a couple of areas which we would like to improve
on. One area is in improving the de-noising along the edges
as the method we used did not perform so well along the
edges. The future work of research would be to implement
Wiener Filter in Wavelet Domain.
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