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Abstract: This paper presents efficient compensated Cascaded Integrator Comb (CIC) decimation filter to improve the passband
of interest using redundant signed digit arithmetic. In redundant representations, addition can be carried out in a constant
time independent of the word length of the operands. Most of the research in the last decades has concentrated on reducing
the delay of addition. A hybrid adder can add an unsigned number to a signed-digit number and hence their efficient
performance greatly determines the quality of the final output of the concerned circuit. The proposed structure consists of
compensated section cascade with CIC decimation sections, each down-sampled by a specific down-sampling factor. The
number of sections depends on the decimation factor of the original comb decimator and the number of cascaded filters for
different stages. The magnitude response is improved by using FIR prefilters. The coefficients of the compensator filter are
presented in a signed digits (SD) form, and can be implemented using only adders and shifts. Consequently, the resulting
filter is a multiplier free filter and exhibits a high attenuation in the stopband, as well as a low passband droop.
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1. INTRODUCTION

Multirate signal processing techniques are widely used in
many areas of modern engineering such as communications,
image processing, digital audio, and multimedia. The main
advantage of a multirate system is the substantial decrease
of computational complexity, and consequently, the cost
reduction. The computational efficiency of multirate
algorithms is based on the ability to use simultaneously
different sampling rates in the different parts of the system.
Multirate DSP is the process of converting data sampled at
one rate (Fs1) to data sampled at another rate (Fs2). The
process of decimation (if Fs1 > Fs2) is used to transform
1-bit data stream which has very high sampling rate into
the required bit resolution signal with lower sampling rate.
Thus decimation has two functions to perform
simultaneously, one is averaging filter function and the other
is rate reduction. Hogenauer [1] presented a commonly used
decimation filter known as cascaded-integrator-comb (CIC)
filter that consists of cascaded integrators and differentiators
section, separated by a down-sampler. A pictorial representation
of the decimation process is shown in below figure:

For decimation by a factor of K, the original data must

reside in a bandwidth given by (2 )
sF

K , where Fs is the rate

at which the original data was sampled. Thus, if the original
data contains valid information in the portion of the spectrum

beyond (2 )
sF

K , decimation is not possible. The three basic

tasks performed by this decimation filter are:

Removing quantization noise: Reducing the base band
quantization noise is equivalent to increasing the effective
resolution of the digital output.

Decimation (sample rate reduction): Desirable to bring
the sampling rate down to the Nyquist rate which minimizes
the amount of information for subsequent transmission,
storage, or digital signal processing.

Anti-aliasing: Due to the high sampling rate of the
modulator the digital decimation filter must perform
computationally intensive signal processing algorithms in
real time. Higher order modulators produce highly shaped
noise and hence the decimation filter should be very efficient
to remove this excess quantization noise and to regain the
original characteristics of the signal in the base band.

This filter has very low complexity but exhibits two
main problems: (a) The integrator section works at the higher
input data rate while the differentiator section operates at
the lower data rate and therfore require higher chip area
with higher power dissipation and (b) A high passband droop
and a low stopband attenuation in its magnitude characteristic.Figure 1: Conceptual View of a Decimation Filter
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To overcome these problems, various methods have
been introduced that uses non-recursive structure of a comb
filter to reduce the power consumption as well as to increase
the circuit speed [2]. Kwentus et. al. [3] outlined a method
that uses the sharpening technique to decrease the passband
droop and to increase the stopband attenuation but it requires
sharpening to be performed at the high input rate and hence
resulting higher power consumption. Jovanovic et. al. [4]
and Presti L. L. [5] discussed some methods to attain the
desired low stopband attenuation by allowing the sharpening
section to operate at the lower rate with the cost of the
introduction of two multipliers working at a high rate. In
[6] a new multistage comb-rotated sinc (RS) decimator is
introduced which permit both multipliers to work at the
lower rate, with no filtering at the high input rate. A
cascading method [7] uses to reduce the passband droop by
cascading sharpened comb filter with the Rotated sinc (RS)
filter. G. Jovanovic, Dolecek et. al. [8] is introduced a new
multiplier-free CIC-cosine decimation filter with no filtering
at the high input rate. In [9], G. Javanovic Dolecek et. al.
proposed a efficient modification of the CIC cosine
decimation filter using canonical signed digits (CSD). In
its proposed structure, a second order compensator filter is
introduced at low rate to improve the passband and then the
compensator filter coefficient are presented in a canonical
signed digits (CSD) form but limiting with speed.

Arithmetic operators designed using redundant number
system achieves considerable speed improvement compared
with operators designed using conventional number system.
The execution speed of an arithmetic operation is directly
related to chosen architecture and the number system
employed to implement architecture. These redundant
arithmetic operations employ a signed digit representation
where each digit of a number can be positive or negative.
The use of a redundant number systems leads to carry free
addition, where the carry propagates only through two or
three stages, independent of the word length. In recent years
carry free arithmetic operations (such as multiplication,
division, square root etc.) employing redundant number
systems [10] have received considerable attention. Ripple
carry adder (RCA) had a long carry propagation paths
extending from the least significant bit to the most
significant bit position. Its computation time is directly
proportional to the word length of the operands. Carry select
addition scheme reduces the computation time by pre-
computing some positions of the results for all possible carry
bit values (i.e. 1 & 0) and using the carry from the previous
bit position (after it becomes available ) to choose the proper
result. Weinberger and Smith [11] have proposed Carry
Look-ahead adder scheme to speed-up additions by using
parallelism to propagate carries. Robertson [12] and
Avizienis [13] suggested a set of arithmetic rules for
redundant signed digit numbers. Takaji and Yazima [14]
proposed a high-speed algorithm suitable for VLSI
implementation using RBSD numbers. A carry select

addition technique was presented [15] by O. J. Bedrij.
Changes at all levels are required to have a higher
performance design since the clock frequency and power
consumption doubles every two years.

The efforts to increase the speed of computing depends
on the choice of logic design style (arrangement of gates
and number system representation which is capable of
elimination length of carry propagation chains during
addition. In this paper, we have proposed a simple and
efficient compensated CIC decimation filter using signed
digit number arithmetic to achieve fast decimation response
and desired low passband droop in comparison to CIC filter.

2. CASCADED INTEGRATOR COMB (CIC) FILTER

Multirate multistage signal processing is important in
modern telecommunication applications. Cascaded
integrator-comb (CIC), or Hogenauer filters, are multirate
filters used for realizing large sample rate changes in digital
systems. CIC filter structure, suggested by E. B. Hogenauer,
consist of an integrator block working at the oversampled
frequency Fs , a clock divider for rate reduction and a
differentiator block working at Fs/k, where k is the
decimation ratio. CIC filters are multiplierless structures,
consisting of only adders and delay elements which is a great
advantage when aiming at low power consumption. The
frequency response of CIC filters has a poor in band
frequency response and are mostly used to reduce the the
decimation factor by large ratio while suitable response
sharpening filters work at the reduced rate to get the desired
characteristics. CIC filters are frequently used in digital
down-converters (DDCs) and digital up-converters.

The cascaded integrator-comb (CIC) filter is a class of
hardware-efficient linear phase finite impulse response (FIR)
digital filters, consists of an equal number of stages of ideal
integrator filters and comb filters. Its frequency response
may be tuned by selecting the appropriate number of
cascaded integrator and comb filter pairs. However, the
disadvantage of a CIC filter is that its pass band is not flat,
which is undesirable in many applications. Fortunately, this
problem can be alleviated by a compensation filter. CIC filters
achieve sampling rate decrease (decimation) and sampling
rate increase (interpolation) without using multipliers. The
CIC filter first performs the averaging operation then follows
it with the decimation. The transfer function of the CIC filter
in z-domain is given in equation (1).
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In equation (1), K is the oversampling ratio and p is
the order of the filter. The numerator (1 – z–k)p represents
the transfer function of a differentiator and the denominator
1/(1 – z–1) p indicates the transfer function of an integrator.
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A simple block diagram of a first order CIC filter is
shown in Figure 2. In a CIC filter, the integrators operate at
high sampling frequency ( fs), and the comb filters operate

at low frequency
sf

K
 
  

. The clock divider circuit divides the

oversampling clock signal by the oversampling ratio, K after
the integrator stage. By operating the differentiator at lower
frequencies, a reduction in the power consumption is
achieved.

The performance of the compensation filter depends
on the value of v, which is obtained by minimizing the
corresponding error function. C(w)can work as a roll off
compensation filter as it shows opposite frequency
characteristics of CIC filter in frequency domain. Let the
frequency response of the CIC filter as f(w), Pe is pass band
edge of the received signal and the frequency response of
an ideal filter as D(ω), then error function is defined by-

2
( ) 0 ( ( ) ( ) ( ))eP

uw vE D w C w f w dw= ∫ − (3)

Roll off phenomenon of the CIC filter can exactly
compensated if the frequency response characteristics of the
received signal are used as a weighting function. It slightly
improves the flatness of the pass band. This method focused
on compensating the slope of the pass band, which is already
fixed in the digital receiver, by letting the CIC filter followed
by the compensation filter with a minimum computational
load.

3.2. Compensated CIC-Cosine Decimation Filter

This filter is a modified and efficient version of the CIC
Cosine decimation filter. In order to improve the passband
of interest of the overall filter, a second order compensator
filter is introduced at low rate. The compensator filter
coefficients are presented in a canonical signed digits (CSD)
form, and can be implemented using only adders and shifts.
Transfer function and magnitude response of compensation
filter is given by-

( ) – –2M M K
compH Z v uz vz= + + (4)

( ) 2 cos( )jKw
compH e v Kw u= + (5)

Where v & u real valued constant and K are is decimation
factor. Worst pass band distortion occurs at w = 0 & w = wc

where cw
KR

π= and R is the decimation factor of next

decimation stage. In order to compensate the pass band
droop (δc) at the frequency wc then 2v + u = 1 and 2cos(Kwc)

+ u =
1

cδ
.v and u can be calculate by-
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Figure 2: Block Diagram of First Order CIC Filter

3. DIFFERENT COMPENSATION TECHNIQUES

When the number of stages is large, CIC filter introduces a
droop in the passband and this droop is dependent on the
CIC decimation ratio. To overcome the magnitude droop, a
FIR filter that has a magnitude response that is the inverse
of the CIC filter can be applied to achieve frequency
response correction. Usually the CIC filter is followed by a
second decimating lowpass filter stage and its decimation
ratio is significantly smaller than that of the CIC stage
(typically 16 or less). The decimation factor of this second
stage will determine the frequency at which the worst-case
aliasing will occur and will also determine the edge
frequency of the passband of interest, where the worst-case
passband distortion will occur. Several schemes have been
proposed to design the compensation of CIC filter’s
passband droop, mainly in the narrow pass band. The
motivation behind the compensation methods is to
appropriately modify the original CIC characteristic in the
pass band such that the compensator filter has as low
complexity as possible. Various methods used for
compensation of CIC decimation filter are as follows:

3.1. CIC Roll-Off Compensation Filter

The CIC roll-off compensation filter is like a channel
selective filter with symmetric characteristics in frequency
response. This method compensated the roll off of the CIC
filter in pass band by letting the CIC filter followed by a
symmetric FIR filter with a minimum order. CIC roll off
compensation filter can be written as:

( )– 1
( ) 1 ( ) 1

1 2 1 2 1 2

v v
c n n n n

v v v

−= δ ( + ) + δ + δ +
− − − (2)

Where
1

, ,
1 2 1 2 1 2

v v

v v v

− − 
 − − − 

are the compensation filter

coefficient and
1 2 cos

( )
1 2

v w
C w

v

−=
− is its frequency

response.



326 International Journal of Electronics Engineering

Where δcomp =
1

cδ and δc should be less than 0.01dB. If the

passband droop is within the desired limit then the transfer
function of compensated filter can represented in canonical
signed digit (CSD) as:

– –2( )K K K
comp CSD CSD CSD CSDH Z x y z x z− = + + (9)

Where xCSD and yCSD are the CSD representations of the
quantized coefficients xq and yq of the proposed
compensation filter that satisfied the relation 2xq + yq = 1
and given by-
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The procedure is continued until the desired Pass band
compensation is obtained. There is a trade off between the
desired compensation of the pass band droop and filter
coefficients can control the desired pass band droop of the
overall decimation filter.

4. TECHNOLOGY DEVELOPMENT OF FAST
ADDERS AND THEIR ARITHMETIC

A fast and energy-efficient adder is essential for a high-
performance processor. In computing signed digit number
representation is required to encode negative numbers in
binary number systems. In mathematics, negative numbers
in any base are represented by prefixing them with a – sign.
However, in computer hardware, numbers are represented
in binary only without extra symbols, requiring a method
of encoding the minus sign. The signed digit number
representation makes it possible to perform addition without
carry propagation chains that are used to speed up arithmetic
operations. Ripple Carry adder is the first and the most
fundamental adder that is capable of performing binary
number additions.

4.1. Ripple Carry Adders (RCA)

The ripple carry adder is composed of a chain of full adders
with length n, where n is the length of the input operands.
The most straightforward implementation of a parallel adder
for two-operands An-1 , An-2 …., A0 and Bn-1, Bn-2…. B0 is
through the use of n basic units called full adders. At the
ith bit position, the ith bits of operands A and B and a carry
signal Ci from the preceding adder stage are used to generate
the ith bit of the sum, Si, and a carry, Ci+1, to the next adder
stage.

In a parallel arithmetics units, all 2n inputs bits are
usually available to the adder at the same time. However,
the carries have to propogate from the FA in position 0 to
position i in order to produce the correct sum and carry-out

bits. In other words, we need to wait until the carries ripples
through all n FAs.

4.2. Carry Look Ahead Adder (CLA)

The carry propagation can be speed-up by three ways. First,
to use a faster logic circuit technology, second, to generate
carries by means of forecasting logic that does not rely on
the carry signal being rippled from stage to stage of the adder
and third, by carry free addition algorithm. The acceleration
of the computation uses speed-up techniques (Carry Look
Ahead, Carry Select and Carry Skip). Finally, a combination
of these techniques can prove to be an optimum for large
adders.

Weinberger and Smith [11] uses look ahead carry
technique rather than carry rippling technique to speed up
the carry propagation by Calculating values for each digit
position whether that position is going to propagate a carry
if one comes in from the right and deduce quickly whether
that group is going to propagate a carry that comes in from
the right.

4.3. Carry Select Adder (CSA)

Carry select adder scheme [15] divides adders into blocks of
ripple carry adder each with two replicas, one replica evaluates
with carry- in of 0, the other one with carry- in of 1. In this
scheme the carry out is from less significant block which then
conditionally selects the output of succeeding blocks.

4.4. Carry-Skip Adders

Carry-skip scheme is proposed by Kilburn et al. [16] to
accelerate the carry propagation. A carry-skip adder reduces
the time needed to propagate the carry by skipping over
groups of consecutive adder stages. In VLSI technology the
carry-skip adder is compatible in speed to the carry look-
ahead technique but it requires less chip area and consumes
less power. Carry Skip Adders take advantage both of the
generation or the propagation of the carry signal. They are
divided into blocks, where a special circuit detects quickly
if all the bits to be added are different (Pi = 1 in the entire
block). It adds additional group carry bypass paths to its
ripple path and the carries can bypass the ripple path when
the group propagate signal is high.

4.5. Ling Adders

Adder proposed by Ling [17] is an improved version of
conventional carry-look ahead adder. This approach is faster,

Figure 3: A 4-bit Ripple-Carry Adder
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less expensive and is designed using H. Ling’s equations
and generally implemented in BiCMOS. These adders
replaces the conventional propagate operator from a XOR
with an OR gate which results in a much cheaper operation.
In Ling’s modification, “p” signal is replaced by “t” signal,
which is called transfer bit and the group generated carry
Gi by Hi.

i i i i i ip a b t a b= ⊕ → = + (12)

1i i iH G G −= + (13)

If there is a carry-in or a carry-out at ith bit then Hi is
high. Similarly the generate and group generate operation
can be reformulated as:

1 1 1 1( )i i i i i i i i i i i i iG g g G p G g g p G g t G− − − −= + + = + + = +

1 1 ( )i i i iH g t H Ling− −= + (14)

*
3 3 2 3 2 1 3 2 1 0 ( )G g t g t t g t t t g conventional= + + +

*
3 2 2 2 1 1 2 1 0 0 3 2 2 1 2 1 0 ( )H g t g t t g t t t g g g t g t t g Ling= + + + → + + + (15)

Comparing G* and H*, the maximum fan-in of Ling
adder is 3 as compared to 4 of CLA, which means the pull-
down path is shortened by one and thus the speed is
improved. The advantage of this scheme is its cheaper carry
propagation at the cost of more complex sum generation
stage. There are also a large group of Hybrid adders that
uses a combination of two or more of the previously
described methods for addition to achieve the desired
performance. A common approach to the design of hybrid
adders is to choose one method for carry propagation and
another method for sum calculation.

5. SIGNED BINARY DIGIT (SBD) ARITHMETIC

In the binary signed digit number system, each digit can
assume any one of three values {-1, 0, 1}. As a result
redundancy is introduced in a system i.e. a number can be
represented in more than one way. Due to the presence of
redundancy one can perform carry-propagation free addition
and hence parallel addition of two redundant numbers can
be performed in a constant time independent of the word
length of operands.

Signed–digit (SD) number representation makes it
possible to perform “Carry free addition” which means that
carry propagation is limited to a single digit position i.e.
the carry propagation length is fixed irrespective of the
word length and has been used to speed up arithmetic
operations. This redundancy can be exploited to limit the
length of carry propagation chains to only one digit
position, making it possible to add two numbers in fixed
time, irrespective of the word length. The above algorithm
can be clearly understood with the help of following
example:

Radix (r) = 10, α = 6 Radix (r) = 2, α = 1

4
–

1 5 (-385) Addend 1
–

0 1 1
–

(-7) Addend

3 1
–

2 (292) Augend 1 1
–

1
–

0 (2) Augend

1
–

0 7 0 1
–

0 1
–

1
–

0 3
–

Intermediate sum 0 1 0 1
–

Intermediate sum

0 1 0 Intermediate carry 0 1
–

0 0 0 Intermediate carry

1
–

1 3
–

(-93) Final sum 0 1
–

1 0 1
–

(-5) Final sum

5.1. Algorithm of Signed Digit Number Representation

For a given radix r, each digit mi in an sign digit number
system is typically in the range,

1, , –1
2i ix y where r r

 − α ≤ ≤ + α − ≤ α ≤  
(16)

The addition here is done in two steps. In the first step,
an intermediate sum si and a carry ci is generated parallely
for all digit position based on the operand digits mi and ni at
each digit position i. In the second step, the summation
pi = si + ci–1 is carried out to produce the final sum digit pi
the most important fact is that it is always possible to select
the intermediate sum si and ci–1 carry such that the summation
in the second step does not generate a carry. If the selected
value of b in the equation 1 satisfies the condition:

1
1

2
r r

 + ≤ α ≤ −  
(17)

Then the intermediate sum si and ci depend only on the
input operands i.e. on mi and ni. The interim sum is-

si = xi + yi – rci (18)

where

1 if

1 if –
0 if

i i

i i i

i i

x y b

c x y b

x y b

+ ≤ +
= − + ≤
 + <

Let αi = xi + yi & αi-1 = xi-1 + yi-1 denote the sums of the
input digits at the two positions respectively. Given in table,
the rules for generating the intermediate sum si & carry ci.
In the table, the symbol X indicates a don’t care i.e. the value
of αi-1 doesn’t matter.

Table 1
Signed Digit (SD) Rules for Selecting Carry ci and

Intermediate Sum si Based on i for Radix r

αi αi-1 ci si

αi = 2b X -1 0
–2b < αi < –b X -1 αi + r
αi = –b αi-1 ≤ –b -1 b

αi-1 > b 0 -b
–b < αi < b X 0 αi

αi = b αi-1 < b 0 b
αi-1 ≥ b 1 -b

b < αi < 2b X 1 αi – r
αi = 2b X 1 0
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6. DESIGN ISSUE AND SIMULATION RESULTS

CIC decimation filter have a poor low pass response,
however they are easy to implement and not require
multiplications in real-time. Low pass magnitude response
can be improved by compensating the passband droop and
then by using redundant signed digit number arithmetic, the
compensated response can realize more faster than other
compensation method.

Filter Coefficient

-0.005022 -0.01366 -0.013297 0.0011859 0.011467 -0.00013418

Response Time

Number Decima- Compen- Compen- Compen- Compen-
of Bits ted sated sated sated sated

CIC Filter CIC CIC Filter CIC Filter CIC Filter
Filter with RCA with SD-8 with SD-16

2 8.541ns 8.623ns 7.935ns 6.216ns 6.217ns

4 8.686ns 8.725ns 7.852ns 6.215ns 6.211ns

8 8.746ns 8.819ns 7.763ns 6.203ns 6.201ns

16 8.873ns 8.965ns 7.602ns 6.118ns 6.103ns

32 8.951ns 9.128ns 7.511ns 6.067ns 6.058ns

64 9.113ns 9.298ns 7.385ns 6.006ns 6.017ns

128 9.265ns 9.378ns 7.218ns 5.982ns 5.972ns

256 9.329ns 9.504ns 7.119ns 5.866ns 5.827ns

512 9.471ns 9.717ns 7.097ns 5.582ns 5.561ns

1024 9.523ns 9.831ns 7.019ns 5.579ns 5.534ns

Figure 4: Sub-System Model for Down Sampling

Figure 5: Inner-System Model for Down Sampling with
Signed Digit Adder

The presented CIC decimation filter and the cascade
equivalence are used to build an efficient compensated CIC
decimation filter structure. we analysized the performance
of Compensated CIC decimation filter using different fast
adder algorithm. The resultant decimation filter using signed
digit arithmetic shows faster and more efficient performance
in terms of frequency response, speed and area.

Figure 6: (a) Two CIC Filters with one FIR Filter with K =
(8,2) X4 (b) Compensated CIC Decimation Filter with K = 64

Figure 7: Comparison of Response Time of Different
Addition Algorithms

7. CONCLUSIONS

This paper presented an efficient and compensated CIC
decimation filter using different fast adder algorithms to
increase the speed of down sampling. Area wise CIC filter
is a better option than FIR due to its multiplier less
architecture and less circuitry and hence results a trade-off
between the desired compensation of the passband droop
and area. Large rate changes require fast multipliers and
very long filters and therefore by using the Signed digit
numbers system at bit level, the speed of operation can be
increased. Through examples and MATLAB programming
for radix-8 and 16, we conclude that algorithm for signed
digit numbers is more flexible, where it is a generalized
form & very well includes case of hybrid numbers. After
the proper analysis and comparison of compensated CIC
filter structure with fast adder algorithm for radix - 8 and
16, it is found that the proposed compensated filter stucture
using signed digit arithmetic is more efficient in terms of
the desired passband droop of the overall decimation factor,
response time and area. The width of the passband and the
frequency characteristics outside the passband are severely
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limited. Additionally, using the polyphase decomposition,
the filters at the first stage can be moved at the lower rate
and by increasing the number of stages, the amount of
passband aliasing or imaging error can be brought within
required ranges.
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