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Abstract: Reed-Solomon codes are an important class of error correcting codes used in many applications related to
communications and digital storage. The fundamental operations in Reed-Solomon encoding and decoding involve Galois
field arithmetic. Computer simulation tool, MATLAB is used to create and run extensively the entire simulation model for
performance evaluation. It is discovered that the performance of RS codes can be assess through the function of its block
size, redundancy and code rate and it is observed using Bit-Error Rate (BER) performance curve. Because RS codes work at
byte level, thus it is also apparent that RS codes can perform well against burst noise. The results show that code gain with
high code rate is better than that of low code rate and it is found that RS coded QAM signal performs better than the coded
D-PSK signal with the same modulation size.
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1. INTRODUCTION

In real world communication, errors are introduced in
messages sent from one point to another as shown in
Figure 1. Reed-Solomon is an error-correcting coding
system that was devised to address the issue of correcting
multiple errors especially burst-type errors in mass storage
devices (hard disk drives, DVD, barcode tags), wireless and
mobile communications units, satellite links, digital TV,
digital video broadcasting (DVB), and modem technologies
like xDSL (“x” referring to all the existing DSL solutions,
whether ADSL, VDSL, SDSL, or HDSL).

of code is also known as a systematic code. A well-known
example of a RS code is RS (255, 223) with 8-bit symbols.
For this specific Reed-Solomon code, each code word has
255 total bytes, with 223 bytes of data and 32 bytes for parity.
This code has: n = 255, k = 223, s = 8, 2t = 32, t = 16.

Figure 1: Two Points Exchange Information

In order for the transmitted data to be corrected in the
event that it acquires errors, it has to be encoded. The
receiver uses the appended encoded bits to determine and
correct the errors upon reception of the transmitted signal.
The number and type of errors that are correctable depend
on the specific Reed-Solomon coding scheme used. A Reed-
Solomon code is specified as RS (n, k) with s-bit symbols,
where n is the total number of bytes the code word contains
and k is the number of data bytes. The number of parity
bytes is equal to n – k, where n is 2 raised to the power of
s minus one (2s –1). A Reed-Solomon decoder can correct
up to t number of bytes, where 2t = n – k. Figure 2 shows a
Reed-Solomon code word in which the data is left unaltered
while the parity bits are suffixed to the data bits. This type

Figure 2: Reed Solomon Code Word

This means that the decoder can automatically correct
16 symbol errors up to 16 bytes anywhere in the code word.

1.1. Reed-Solomon Terminology

• Symbol Width is the number of bits per symbol

• Code Word is the block of n symbols

• RS (n, k) code:

- n is the total number of symbols per code word

- k is the number of information symbols per code word

• Code Rate is equal to k / n

• r = (n – k) is the number of check symbols.

• t = (n – k) / 2 is the maximum number of Symbols with
errors that can be corrected.

2. RS SYSTEM MODEL

In this subsection the testing is applied to single carrier
system with (AWGN) channel model using (QAM)
technique. AWGN channel is having a frequency spectrum
that is continuous and uniform over a specified frequency
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band or it has equal power per hertz over the specified
frequency band QAM is a modulation technique where its
amplitude is allowed to vary with phase, also can be viewed
as a combination of amplitude shift keying (ASK) as well
as phase shift keying (PSK). It can be viewed as ASK in
two dimension. Figure 3 demonstrates the simulation model
employed by this section.

255/239 associated with coding, which is to increase the
number of symbol states in the modulation scheme. For this
reason, spectrally efficient multilevel modulation schemes
such as M-PSK and M-QAM were developed. However,
increasing the number of symbol states may incur an
implementation penalty as well as a large energy efficiency
penalty, requiring higher phase and amplitude accuracy in
both transmitter and receiver systems.

Figure 3: Single Carrier Transceiver

3. RS ENCODING & DECODING PROCESS

Reed-Solomon (RS) code is a cyclic symbol error-correcting
code that operates at the block level rather than the bit level.
For block codes, the incoming data stream is first packaged
into small blocks. These blocks are then treated as a new
set of k symbols to be packaged into a super-coded block of
n symbols, by appending the calculated redundancy. Such
symbols can either be comprised of one bit (binary code)
or, of several bits (symbol codes). Therefore, the information
transfer rate is reduced by a factor called code rate R= k/n,
and the bandwidth of the signal produced by the modulator
is expanded by the ratio 1/R= n/k, relative to a system using
the same modulator without coding [1]. The Reed-Solomon
encoding and decoding require a considerable amount of
computation and arithmetical operations over a finite
number system with certain properties, i.e. algebraic
systems, which in this case is called fields. RS’s initial
definition focused on the evaluation of polynomials over
the elements in a finite field (Galois field) [2].

Suppose we are dealing with a 256-level RS code of a
natural block length 255 in conjunction with a modulation/
demodulation scheme. Here the field size is 256, and the
information and code symbols can be regarded as 8-bit
symbols. Let that we seek a dmin = 17, producing t = 8 or
fewer symbol-error-correcting capability. This implies that
n - k =16, or the number of information symbols is 239.
The generator polynomial for (255,239) RS code is a 16
degree polynomial over GF (256) with coefficients given
in an ascending order as α136 α240 α208 α195 α181 α158 α201

α100 α11 α83 α167 α107 α113 α110 α106 α121. The field
generator polynomial for this code over GF (2) is x8 + x4 +
x3  + x2  + 1.

In such applications, there is one obvious method
to avoid the traditional bandwidth expansion by a factor

Figure 4: Block Diagram of Coded Single Carrier System
Model

The performance of RS code is tested by combining
channel and modulation coding in single carrier system,
through the simulation of such a system as depicted in Figure
4. The RS coded data are interleaved to provide additional
error correction. This process spreads the data from several
RS blocks over a much longer period of time so that long
burst of noise is required to overcome the capability of the
RS code.

4. RS ENCODER AND DECODER ALGORITHMS

4.1.Encoder Algorithm

Cyclic codes, such as Reed-Solomon codes, are described
in numerous coding theory books [3] [4] [5]. Given a data
polynomial a(x) of degree k < n, n = 2m, in Galois field
GF (2m) and a code generating polynomial g(x) of degree
p, where p ≤ n-k and
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with αi successive unity roots in GF (2m) and a i
elements of the same field, the systematic encoding of a(x)
is given by
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where R(x) is the remainder of the division a(x)xn-k by g(x).
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the remainder R(x) of P(x) divided by G(x)can be expressed
as:
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Where N = n – k, αi are the roots of the polynomial G(x),
and β(i) are GF polynomials generated by successive Horner
reductions of P(x) by αi. Successive Horner reductions of
the polynomial by are illustrated in Table 1. [6].

The entries in the first row are the coefficients of the
polynomial to be reduced and the entries in the rightmost
column are the unity roots. If the remainder (j) is zero,
then j is a root of P(x). The entries of the second row are
the coefficients of the reduced polynomial with 0, and
so on. Each row represents the coefficients of the polynomial
to be reduced with the root of the g(x) polynomial in the
corresponding position of the rightmost column. The result
of the reduction is the next row.

Table 1
Horner Reduction Table

an an-1 an-2 a0 α0

an an α0
+ an-1 (an α0 + an-1)α

0 + an-2 β0 α1

an an α1
+ anα

0 + an-1 (an α1 + an α0 + an-1)α
1 + α2

(an α0 + an-1)α
0 + an-2

• • • • •

an β(N-1) • • • • • • αN-1

The encoding algorithm is performed as follows:

• Perform the successive Horner reductions on the
polynomial a(x)xn-k to obtain the coefficients β(i),

• Calculate R(x) as described in Equation 4,

• Calculate C(x) as described in Equation 2.

4.2. Decoder Algorithm

Suppose the received code word is
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Instead of checking the validity of the code word by
encoding the data portion of the received code word and
then comparing the computed parity bits to the received
parity bits, the decoder starts by directly computing the
syndromes of the received codeword using Equation 6.

T
i i

S C= ∑ (6)

where C is a vector formed from the coefficients of the data
polynomial and Σi are the syndrome vectors computed using,
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If all the syndromes are zeroes, there are no errors. If
any syndrome differs from zero, the following syndrome
matrix equation is solved, where λi are the coefficients of
the error locator polynomial.
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The above system of equations is solved using Gaussian
elimination to obtain Equation 9.
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This system of equations is then solved to produce

0 1, 1 1 0 1...N N N− − −λ = Ξ λ = Ξ λ + Ξ (10)

The error locator polynomial is solved using Chien
search. The inverse of the solution of the error locator
polynomial represents the position of the bit error.

5. SIMULATED RESULTS

Differential M-DPSK and coherent M-QAM modulation/
demodulation technique are adopted in this work. Figure 5
simulates the transmission of encoded and modulated single
carrier signal in the presence of additive white Gaussian
noise, where the encoded data are 15 symbols depth
interleaved. BER remains at high value until SNR exceeds
a certain point dependent on the constellation size. As
sequence of points from a bandwidth-efficient constellation,
we can have a few positions where code words differ by
symbols having large inter-signal distance, or we can have
a relatively larger number of positions where the symbol
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distance is small. Ultimately, minimum distance between
constellation points results in higher required SNR to
achieve error-free reception, for example, a change from
64-DPSK to 128-DPSK results in a necessary increase in
SNR by a maximum of 6dB. Moreover, it is clear that the
coherent modulation performs better than differential
modulated signal with the same constellation size of about
12 dB. For inclusion of ISI effect on system performance
under consideration due to multi-path propagation,
Figure 6 illustrates the BER as a function of SNR over
Rician fading channel with two path and τMED (Mean Excess
Delay) of approximately 0.4 sample and τmax (Maximum
Excess Delay) of 10 sample. It is apparent that the ISI so
induced, degrades the performance of coded single carrier
in terms of the required SNR, for example, of about 10 dB
at BER = 10-2 in 16-QAM system.

binary modulation. Figure 7 graphed the decoder output
BER versus channel SNR for two different t values 10 and
40 and fixed n = 255 RS code over Rician channel of τmax=30
sample and τMED = 2.5 sample.

Figure 5: BER Performance of Single Carrier System in
AWGN Channel with RS (255,239) Code

Figure 6: BER Performance of Single Carrier System with
RS (255,239) Code in Rician Channel of MED = 0.4 Sample

However, the transition to 64-QAM or 16-DPSK results
in an irreducible error floor, even over smaller delay spread.
Various studies have been carried out to deal with
optimization of the structure of Reed-Solomon codes using

Figure 7: BER Performance Comparison of Coded 16-QAM
Signal at Different t Values Over Rician Channel of max=30

Sample

Figure 8: BER Performance Comparison of Different RS
Coded 16-QAM Signal Over Rician Channel of max=30

Sample

Recall that the relation between code redundancy and
t is n-k = 2t. The error rates are related to the code error
correction capability, because the channel generates errors
randomly with numbers might exceed t within some of the
messages. This effect gets more obvious for lower t. In the
figure dashed line is conducted for 20-error correction
capability with 127-code length, where lower error rates are
resulted under the same channel condition. Because of that
a longer code word is more susceptible to random channel
errors. The encoding process, to ensure enough error
protection against channel degradation, is based on a mother
code. In order to guarantee more system flexibility a
shortening procedure is inserted, as shown in Figure 8. RS
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(245,235) and (230,220) shortened code performs better than
the mother RS code (255,245) by a maximum of 3dB in
channel SNR to achieve the error-free reception.

6. CONCLUSION

From the simulated error rates of Reed-Solomon coded
single carrier system over AWGN channel using QAM and
DPSK modulated types, it is found that QAM signal
performance is better than of DPSK signal by about 12dB
for 64-point constellation size. Also, 16-QAM coded signal
over fading channel exhibits a more robust performance than
DPSK even of lower order constellation. Lower error rates
can be achieved using more error code correction capability
and/or shorter code word since it is less susceptible to
random channel errors.
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