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Abstract: RS codes can be considered as serious competitors to turbo codes in terms of performance and complexity. They
are based on a similar philosophy i.e. constrained random code ensembles and iterative decoding algorithms. In this paper,
we present the performance comparison of RS code and block turbo codes. The RS code coupled with receive diversity
techniques are employed as the error correction scheme over optical fiber communication Channels by employing binary
pulse position modulation (BPPM) modulation scheme for optical fiber communication. The performance of codes is evaluated
in term of bit error rate (BER) for a given value of Eb/No. Simulation results demonstrate that the bit error rate (BER)
performance of the Turbo codes (concatenated RS codes) provide better random as well as burst error correction capability
as compared to RS codes.
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1. INTRODUCTION

FEC is widely used in wired and mobile communication,
deep space communication as well as data storage systems.
In the recent past, it has begun to find applications of FEC
in optical links [10]. Error correcting codes are broadly
classified in two categories, viz., Block Codes and
Convolutional Codes. We use block codes in optical
communication systems since they operate at very high data
rate and by using block codes we can find low overhead
codes that are capable of correcting random errors due to
noise, and burst errors due to dispersion and inter-channel
cross talk with special emphasis on complexity and cost. It
is difficult to implement convolutional codes that operate
at high code rate required for fiber-optic systems [9].
Algebraic block codes, such as Bose-Chaudhuri-
Hocqueaghem (BCH) and Reed-Solomon (RS) codes are
capable of correcting multiple bit-errors with the low
overhead constraint.

In case of fiber-optic communication systems operating
at very high data rate (Rc>0.8). While selecting an error
correcting code one should take into account the practical
limitation imposed by the hardware to make it feasible to
introduce an overhead of (n-k) symbols. Thus, low overhead
constraint becomes an important parameter while selecting
FEC for optical communication application. In this paper,
we have done a comparative analysis of the performance of
different concatenated code using RS code considering the
low overhead requirement as a prime design criterion.

2. ALGEBRIC DECODING ALGORITHMS FOR
RS CODES

2.1. Berlekamp–Massey Algorithm for RS Codes
Decoding of the nonbinary RS codes involves not only
determining the location of errors, but also their magnitudes.
The error polynomial is
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The i’s and sj’s are related by the Newton Identities
and shown in [14] that the syndrome Sj can be expressed in
recursive form as a function of σi‘s and the earlier syndromes
sj-1......., sj-i such that
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The error locator polynomial σ(X) will be determined
after 2t iterations instead of t iterations. As the roots of the
error locator polynomial σ(X) are determined, the task of
the decoder is to find the error magnitude at the error location
numbers. Now, we will utilize the following error evaluator
polynomial Ω(X) having the degree equal to the degree of
σ(X).
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Using 2t syndromes and coefficients of σ(X), the error
magnitudes are computed. The Forney algorithm [7] used
to derive the error magnitudes. Equation 3 can be rewritten
as
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The equation can be rearranged in terms of the known
polynomial σ(X), the error locator polynomial Ω(X) and s(X)
the syndrome polynomial
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Ω(X) is naturally related to the error locations and error
values by the t relations
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The error magnitudes are computed using the
expression
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where σ’(X ) denotes the formal derivative of σ(X ) with
respect to X.

The formal derivative is similar to the usual derivative,
but does not have the same interpretation. If f (X) = f0 + f1 X
+f2 X2 + ..........+ fn Xn + ..........is a polynomial over GF(q),
then the formal derivative f ’(X) is defined as f ′(X) = f1 +
2 f2 X + ............ + nfn Xn-1 + ............ .The and quotient rules
are applied to formal derivatives. Since f(X)∈GF(2m ), then
f(X) has no odd power term.

Applying the definition of formal derivative to σ(X)
equation 7 can be written as
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where eji is the error value at the coordinate in r specified
by βl

The iterative procedure based on which the Berlekamp-
Massey algorithm work is described in [3, 8, 13, 15]. After
the 2t iterations we have σ(X) whose roots are determined
by the Chien search. The inverse of the roots are the error
location numbers βl’s. Now we know where the errors are
in r but not their values. The decoder has to find the error
magnitudes at these locations, which is accomplished by
the Forney algorithm. The decoding is accomplished by
adding the error pattern to r over GF (q).

2.2. Euclid’s Algorithm for BCH and RS Codes
The Euclid’s algorithm is a recursive technique to find the
greatest common divisor (GCD) of two polynomials [16].
If f (X) and g(X) are two polynomials where deg
(f(X ))≥deg(g(X)) then the GCD is computed dividing f (X)
by g(X) recursively so that the algorithm always converges
to a remainder polynomial d(X) = 0 and the last nonzero
polynomial d(X) is the GCD. The recursive relation between
f (X) and g(X) is obtained by writing the initialization
equation [6] such that

m(X) f (X) + n(X)g(X) =d(X), (9)

where m(X ) and n(X ) are intermediate polynomials obtained
during the division process.

The division process is explained in short
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• For the i+1th iteration f (i + 1)(X) = g (i) (x) and g(i+1)

(X) = d (i) (X )

• The algorithm terminates when d (i) (X) = 0 and g(i)

(X) is the GCD of f (X) and g(X)

In the case of decoding BCH and RS codes we are not
interested in the GCD of f (X ) and g(X) but the intermediate
polynomials m(X) and n(X) at each iteration. We define a
quotient polynomial [6].
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Coming back to the decoding of BCH/RS codes we
re-write the key equation (5) for our analysis
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From equation (9), we can write
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Compare equation (9) with the key equation
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To observe that the approach produces the desired
solution to the key equation, we need to utilize the property
of Euclid’s algorithm [11] that states
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For l ≤ t errors the solution of interest has
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There exists only one polynomial σ(X) with degree not
greater than t, which satisfies the key equation (5). This
means that the intermediate result at the ith iteration provides
the solution of our interest to the key equation. Thus, simply
applying the Euclid’s algorithm until deg [di(X)] ≤ t gives
solution to the key equation. Rest of the decoding involves
finding the roots of σ(X) by the Chien search. The inverses
of the roots are the error location numbers in a usual manner.

3. BLOCK TURBO CODE

Concatenated coding schemes were first proposed by Forney
[5] as a method for achieving large coding gains by
combining two or more relatively simple building block
or component codes (sometimes called constituent codes).
Turbo codes were first introduced in 1993 by Berrou,
Glavieux, and Thitimajshima [1,2], where a scheme is
described to achieves a bit-error probability of 10-5, using a
rate 1/2 code over an additive white Gaussian noise (AWGN)
channel and BPSK modulation at an Eb/N0 of 0.7 dB. The
codes are constructed by using two or more component
codes on different interleaved versions of the same
information sequence. Whereas, for conventional codes, the
final step at the decoder yields hard-decision decoded bits
(or, more generally, decoded symbols), for a concatenated
scheme such as a turbo code to work properly, the decoding
algorithm should not limit itself to passing hard decisions
among the decoders.

3.1. Principles of Iterative (Turbo) Decoding

In a typical communications receiver, a demodulator is often
designed to produce soft decisions, which are then
transferred to a decoder. The error-performance improvements

of systems utilizing such soft decisions compared to hard
decisions are typically approximated as 2 dB in optical
AWGN. Such a decoder could be called a soft input/hard
output decoder, because the final decoding process out of
the decoder must terminate in bits (hard decisions) [1]. With
turbo codes, where two or more component codes are used,
and decoding involves feeding outputs from one decoder to
the inputs of other decoders in an iterative fashion, a
hard-output decoder would not be suitable. Because hard
decisions into a decoder degrade system performance
(compared to soft decisions). Hence, decoding of turbo
codes in optical channels needs a soft input/soft output
decoder. For the first decoding iteration of such a soft input/
soft output decoder in optical communication, illustrated in
Figure 1, we generally assume the binary data to be equally
likely, yielding an initial a priori LLR value of L(d) = 0.

Figure 1: Soft Input/Soft Output Decoder
(for a Systematic Code)

The channel LLR value, Lc(x), is measured by forming
the logarithm of the ratio of the values of –l1 and –l2 for a
particular observation of x as shown in Figure 2. The output
L(dˆ) of the decoder in Fig. 1 is made up of the LLR from
the detector, L2 (dˆ),and the extrinsic LLR output, Le(dˆ),
representing knowledge gleaned from the decoding process.
As illustrated in Figure 1, for iterative decoding, the extrinsic
likelihood is fed back to the decoder input, to serve as a
refinement of the a priori probability of the data for the next
iteration.

Figure 2: Likelihood Functions

4. PRODUCT CODE

Product codes (or iterated codes) [4, 12] are serially
concatenated codes using two or more short block codes to
form long block codes. If C1 (n1, k1, dmin1) and C2 (n2, k2, dmin2)
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are two systematic linear block codes, then the product code
P = C1 ⊗ C2 is obtained by

• placing (k1 * k2) information symbols in a matrix of
k1 rows and k2 columns

• coding the k1 rows using code C2

• coding the n2 columns using code C1

The resultant product code [13] P (n, k, dmin) has n = n1
* n2, k = k1 * k2, dmin = dmin1 * d min2 and code rate is given
by R = R1* R2.

4.1. RS Product Code

In our work we have used the classical method for the
construction of RS product codes, where the information
symbol matrix contains ki*ko q-ary information symbols.
The codes C1 and C2 have the same code length ni = no. The
resultant code design scheme is easy to understand by
Figure 3 where the span N of the interleaver is equal to the
code length no of the outer code and the depth D is equal to
the information length ki of the inner code.

5. SIMULATION RESULTS

Figure 4 depicts the serially concatenated RS (255, 239)
and RS (255, 239) code with a row-column interleaver of
length 255 bytes and depth 239 bytes on a image. The
serially concatenated RS (255, 239) and RS (255, 223) with
a row-column interleaver of length 255 bytes and depth 223
bytes on same image are shown in Figure 5. The output of
the inner encoder is transposed to show that SCBC with
row-column interleaver is apparently the product code.

Figure 3 : Construction of Product Code

4.2. Decoding of RS Product Code

In the present paper, the product codes based on RS
component codes are decoded by sequentially decoding
the rows and columns of P by hard-decision algebraic
bounded distance decoder for optical communication,
which is sub-optimal but has significant reduced decoding
complexity compared to the optimum ML decoder. We
have simulated the different RS product codes on a
Gaussian channel with sequential row by column hard-
input/hard-output (HIHO) component decoders using the
Berlekamp-Massey algorithm. Soft-decision decoding of
the component RS codes [11] with SISO decoders will
definitely provide additional coding gain but the decoding
complexity will be extremely high. Another limiting factor
is the high data rate at which optical communication
systems operate. Implementing the SISO decoders at such
a high data rate is impracticable. Further iterated decoding
of RS product codes is performed using the component
HIHO decoders.

Figure 4: Serial Concatenation of RS Codes

Figure 5: RS Product Code

The different RS code parameters are presented in
Table 1. From Table 1 we observe as the code rate decreases
the redundancy in the code, the minimum distance of the
code and the asymptotic coding gain increases. The code
rate and redundancy are inversely proportional to each other.

The analytical results for the candidate RS codes for
BER are presented in Figure 6. All simulations are
performed on Matlab piece-wise for an output BER of
≤10-8 for the candidate RS codes.

Table 1
RS Code Parameters

Candidate Code Redundancy dmin Ga(dB)
RS(n, k) Codes Rate (k/n) (n-k)/k (%) (2*t+1) Asymptotic

RS(255, 247) 0.9686 3.24 9 9.4
RS(255, 239) 0.9372 6.69 17 12.02
RS(255, 223) 0.8745 14.35 33 14.6
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The simulated results presented in Figure 7 are
confirmed with the analytical results in Figure 6.

of the concatenated code lies in proper selection of the inner
and the outer code to meet the low overhead requirement.
We extend the assumptions used to compute the output BER
of RS codes to evaluate the approximate analytical output
BER of the concatenated RS codes. The RS product code
parameters are presented in Table 3.

Table 3
RS Product Code Parameters

Candidate RS Code Rate Redundancy (%) dmin =
Product Codes R=R1*R2 (n1*n2-k1*k2)/ k1*k2 dmin1 * dmin2

RS (255, 239) + 0.8784 13.83 289
RS (255, 239)

RS (255, 239) + 0.8196 22.00 561
RS (255,223)mn

The approximate analytical output BER for RS product
codes are presented in Figure 8. The simulations were
performed piece-wise for an output BER of ≤10-8 on
Matlab. The simulated results for same RS product codes
are presented in Figure 9. The simulated performance will
be definitely poor than the approximate analytical
performance. Since the decoding is a two-step decoding
procedure based on HIHO component decoders, which
is sub-optimal. Hence, the approximated analytical
performance in Figure 8 can be considered as a lower
bound on the output BER performance for the candidate
RS product codes.

Figure 6: Theoretical Performance of the RS Codes

Figure 7: Simulated Performance of the RS Codes

Net electrical coding gain (NECG) is commonly used
to quantify FEC performance and indicates an improvement
in the SNR or Q factor at the receiver due to FEC. The
comparison of the performance of the candidate RS codes
in terms of coding gain is presented in Table 2.

Table 2
Coding Gain Comparison of the RS Codes at Output

BER of 10-8

Candidate RS  Redundancy NECG (dB) @  BER ≤ 10-8

(n,k) Codes (n-k)/k (%) (Theoretical) (Simulated)

RS (255,247) 3.24 3.5 3.37
RS (255,239) 6.69 4.42 4.28
RS (255,233) 14.35 5.25 5.15

It can be noticed from the Table 2, the increased
redundancy in the code pays in terms of NECG. The RS
(255, 239) code with almost twice the redundancy compared
to the RS (255, 247) code offers roughly more than 1 dB
additional coding gain. Approximately 2 dB additional
coding gain is offered by the RS (255, 223) code with almost
4.5 times more redundancy than the RS (255, 247) code.

Concatenated codes provide an increased coding gain
but with only a linear increase in hardware cost. Good design

Figure 8: Approximate Output BER Performance of RS
Product Codes

Table 4
Coding Gain Comparison of Codes with 14% Redundancy

Candidate Code Redundancy Code Rate NECG
(%) (dB)@ 10-8

RS (255, 223) 14.35 0.8745 5.15

RS (255, 239) + 13.83 0.8784 5.3
RS (255, 239)
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Further, we present the comparison in terms of net
coding gain performance offered by the different coding
schemes with comparable redundancy and code rate in
Table 4.

6. CONCLUSION

It can be observed from Table 4, even though the candidate
codes offer comparable performance for the same amount
of redundancy, the computational complexity of the encoder
and decoder for these candidate codes are not the same. The
RS (255, 223) encoder has slightly less computational
complexity compared to RS (255, 239) + RS (255, 239)
encoder. Although, the RS (255, 223) decoder has higher
computational complexity compared to the RS (255, 239)
decoder, the decoder for RS (255, 239) + RS (255, 239)
code involves two component RS (255, 239) decoders and
a memory element for the deinterleaver. However, the
overall encoder/decoder complexity for these two codes is
comparable. From the results presented in Figure 6,7,8 and
9, we conclude that while designing an error correcting
scheme for reliable communication we have to tradeoff not
only redundancy against NECG but also complexity
against NECG. So, Simulation results demonstrate that the
bit error rate (BER) performance of the Turbo codes
(concatenated RS codes) provide better random as
well as burst error correction capability as compared to RS
codes.

Figure 9: Simulated Output BER Performance of
RS Product Codes
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