

On Prime Ideals, the Prime Radical and M-Systems

Prabhjot Kaur

Asst. Prof. D.A.V. College (Lahore), Ambala City

Abstract: A group is an algebraic structure consisting of a set of elements equipped with an operation that combines any two elements to form a third element and satisfy certain axioms while a ring is an algebraic structure with two binary operations namely addition and multiplication. I have tried to discuss prime ideals, prime radical and m-system in this paper.

Keywords: Prime ideals, semi-prime ideals, m-system, n-system.

1. INTRODUCTION

In this paper, I have tried to explain the concept of prime ideals in an arbitrary ring, Radical of a ring and few properties of m-system. Besides these some theorems and lemma have been raised such as "If A is an ideal in ring R then B(A) coincide with intersection of all prime ideals in R which contain A". Also some theorems and lemmas based on m-system and n-system have been established.

1.1 Prime Integer: An integer p is said to be prime integer if it has following property that if a and b are integers such that ab is divisible by p then a is divisible by p or b is divisible by p.

1.2 Prime Ideal [1]: An ideal P in ring R is said to be a prime ideal if and only if it has the following property:

If A and B are ideals in R such that $AB \subseteq P$, then $A \subseteq P$ or $B \subseteq P$

1.3 m-system: A set M of elements of a ring R is said to be an m-system if and only if it has following property:

If a, b ε M, these exists x ε R such that axb ε M

- 1.4 Theorem: If P is an ideal in ring R, then following conditions are equivalent:
- (i) P is a prime ideal
- (ii) If a, b ε R such that aRb \subseteq P then a ε P or b ε P
- (iii) If (a) and (b) are principal ideals in R such that (a) (b) $\subseteq P$ then $a \in P$ or $b \in P$.
- (iv) If U and V are right ideals in R such that $UV \subseteq P$ then $U \subseteq P$ or $V \subseteq P$
- $(v) \qquad \text{If } U \text{ and } V \text{ are left ideals in } R \text{ such that } UV \ \subseteq P \text{ then } U \subseteq P \text{ or } V \subseteq P$

Proof:- We first prove (i) implies (ii). Let us assume that P is prime ideal & suppose that $aRb \subseteq P$

 \Rightarrow RaRbR \subseteq P Now, (RaR) (RbR) \subseteq RaR bR \subseteq P, now RaR, RbR are ideals and P is prime ideal \Rightarrow either RaR \subseteq P or RbR \subseteq P

Suppose that $\operatorname{RaR} \subseteq \operatorname{P}$ and let A = (a) Thus, $A^3 \subseteq \operatorname{RaR} \subseteq \operatorname{P}[2]$

Again P is prime ideal thus we have $A \subseteq P \Rightarrow a \epsilon P$

Similarly if RbR \subseteq P, it follows that b ϵ P Thus (ii) is established.

Net we prove (ii) implies (iii) Let (a) (b) \subseteq P

Now, aRb \subseteq (a) (b) \subseteq P and (ii) implies that a ε P or b ε P \Rightarrow (iii) is established.

Next we show that (iii) implies (iv): Suppose, U and V are right ideals in R such that $UV \subseteq P$ Let us assume that $U \not\subset P$ and prove that $V \subseteq P$

Let $u \in U$ with $u \notin P$ and v is an arbitrary element of V

Since $(u)(v) \subseteq UV + RUV \subseteq P \Rightarrow (u)(v) \subseteq P$

Since $u \notin P$ and (iii) implies $v \in P \Rightarrow V \subseteq P$. In a similar manner, (iii) implies (v)

It is trivial that either (iv) or (v) implies (i). Thus Proof of theorem is therefore complete.

Remarks: (1) If P is ideal in R, let us denote by C(P) the complement of P in R, that is, C(P) is the set of elements of R which are not elements of P.

(2) From above theorem (i) and (ii) asserts that P is prime ideal in R if and only if C(P) is an m-system.

(3) If R is itself a prime ideal in R then $C(R) = \phi$

1.5 Prime radical [3]: The prime radical B(A) of ideal A in ring R is the set consisting of those elements r of R with the property that every m-system in R which contains r meets A (that is, has nonempty intersection with A)

Remarks (1) Obviously B(A) is ideal in R. Also A \subseteq B(A)

(2) Suppose P is a prime ideal in R such that $A \subseteq P$ and let $r \in B(A)$. If $r \notin P$, C(P) would be an msystem containing r and therefore C(P) $\cap A \neq \phi$. However, since $A \subseteq P$, C(P) $\cap A = \phi$ and this contradiction shows that $r \in P$ Thus, B(A) $\subseteq P$.

(3) A set of elements of a ring which is closed under multiplication is often called multiplicative system.

(4) If $r \in R$ then the set { $r^i / i=1,2,3,...$ } is a multiplicative system and hence also an m-system.[4]

1.6 Theorem: If A is an ideal in the ring R, then B(A) coincides with the intersection of all prime ideals in R which contain A.

Proof: By the above remark, B(A) is contained in every prime ideal which contains A. We will prove it by showing if $r \notin B(A)$, then there exists a prime ideal P in R such that $r \notin P$ and $A \subseteq P$ Since $r \notin B(A)$, by definition of B(A), there exists an m-system M such that $r \in M$ and $M \cap A=\phi$. Now, consider set τ of all ideals K in R such that $A \subseteq K$ and $M \cap K = \phi$, that is, $\tau = \{K \text{ is ideal in } R / A \subseteq K, M \cap K = \phi\}$. Now, A is ideal in R such that $A \subseteq A, M \cap A = \phi$ thus, A $\varepsilon \tau$ and therefore set τ is non-empty.

By applying, zorn's Lemma to this set, there exists a maximal ideal say P, in the set.

Now, $A \subseteq P$ and $M \cap P = \phi$

Since $r \in M$ and $M \cap P = \phi$ implies $r \notin P$

Now, the proof is complete by showing that P is prime ideal.

Let us suppose that $a \notin P$ and $b \notin P$. Now, To prove P is prime ideal, it is sufficient to prove, (a) (b) $\not\subset P$ since $P \subseteq P+(a)$, $P \subseteq P+(b)$. Since P is maximal element of τ , thus, P+(a) and P+(b) do not belong to τ thus, $(P+(a)) \cap M \neq \phi$ and $(P+(b)) \cap M \neq \phi$. Thus there exists m_1 of M such that $m_1 \in P+(a)$ and there exists m_2 of M such that $m_2 \in P+(b)$.

Since M is an m-system, there exists an element x of R such that $m_1 x m_2 \epsilon$ M.Also $m_1 x m_2 \epsilon$ (P+(a))(P+(b)) now if (a)(b) \subseteq P therefore (P+(a))(P+(b)) \subseteq P \Rightarrow $m_1 x m_2 \epsilon$ P Also $m_1 x m_2 \epsilon$ M implies $m_1 x m_2 \epsilon$ M \cap P and we have $M \cap P \neq \phi$ which is a contradiction as $M \cap P = \phi$

Thus, (a)(b) $\not\subset$ P and therefore P is prime ideal.

1.7 Semi-prime ideal [5]: An ideal Q in a ring R is said to be a semi-prime ideal if and only if it has following property: If A is an ideal in R such that $A^2 \subseteq Q$, then $A \subseteq Q$.

1.8 n-system: A set N of elements of a ring R is said to be an n-system if and only if it has following property: If a ε N, there exists x ε R such that axa ε N.

Remarks: (1) Every Prime ideal is semi-prime ideal.

- (2) Clearly m-system is also an n-system.
- (3) An ideal Q is semi-prime ideal if and only if C(Q) is an n-system.[6]

II. THE PRIME RADICAL OF A RING

The prime radical of the zero ideal in ring R may be called the prime radical of ring R and prime radical of ring R is defined as $B(R) = \{r / r \in R, every \text{ m-system in } R \text{ which contains } r \text{ also contains } o\}[7]$

2.1 Prime ring: A ring R is said to be a prime ring if and only if the zero ideal is prime ideal in R. That is, ring R is prime ring iff either of following conditions holds: If A and B are ideals in R such that AB = (0) then A = (0) or B = (0)

Remark: (1) If R is commutative ring then R is a prime ring iff it has no non-zero divisors of zero.

2.2 Lemma: If $r \in B(A)$ then there exists a positive integer n such that $r^n \in A$

III SEMI-PRIMAL AND COMMUTATIVE IDEALS

If A is an ideal in commutative ring R then $B(A) = \{r \mid r^n \varepsilon \mid A \text{ for some positive integer } n\}$

3.1 Theorem: An ideal Q in ring R is semi-prime ideal in R if and only if residue class R/Q contains no non zero nilpotent ideals.

Proof: Let θ be natural homomorphism of R onto R/Q with Kernel Q. Suppose that Q is Semi-prime ideal in R and U is nilpotent ideal in R/Q, say $U^n = (0)$ then

 $U^{n}\theta^{-1} = \{a / \theta(a) \epsilon \ U^{n} = (0)\} = \text{Kernel of } \theta = Q$

And it follows that $(U\theta^{-1})^n \subseteq U^n \theta^{-1} = Q$

Since Q is semi-prime ideal, therefore $U\theta^{-1} \subseteq Q[8]$

Hence U=(0). Thus R/Q contains no non-zero nilpotent ideal. Conversely, suppose that R/Q has no non-zero nilpotent ideals and A is ideal in R such that $A^2 \subseteq Q$ then $(A\theta)^2 = A^2Q = (0)$ hence $A\theta = 0 \Rightarrow A \subseteq Q \Rightarrow Q$ is semi-prime ideal.

3.2 Theorem: If Q is an ideal in ring R, all of following conditions are equivalent:

- (i) Q is a semi-prime ideal
- (ii) If a ε R such that aRa \subseteq Q then a ε Q
- (iii) If (a) is principal ideal in R such that $(a)^2 \subseteq Q$ then a εQ
- (iv) If U is a right ideal in R such that $U^2 \subseteq Q$ then $U \subseteq Q$
- (v) If U is a left ideal in R such that $U^2 \subseteq Q$ then $U \subseteq Q$

3.3 Theorem: If N is an n-system in the ring R and a ϵ N, there exists an m-system M in R such that a ϵ M and M \subseteq N

Proof: Let $M = \{a_1, a_2, a_3, \dots\}$ where the elements of this sequence are defined inductively as follows:

First, we define $a_1 = a$, since $a \in N \implies a_1 \in N$

Now, N is an n-system therefore, $a_1 R a_1 \cap N \neq \phi$

Again $a_2 \varepsilon$ N, N is an-system $\Rightarrow a_2 R a_2 \cap N \neq \phi$

In general, if a_i has been defined, with $a_i \varepsilon$ N, we choose a_{i+1} as element of $a_i R a_i \cap N$. Thus a set M is defined such that a ε M and M \subseteq N. To complete the proof, we need to show that M is an m-system.

Suppose a_i , $a_j \in M$, For our convenience, let us assume that i < j then $a_{j+1} \in a_j \operatorname{Ra}_j \subseteq a_i \operatorname{Ra}_j$ and $a_{j+1} \in M$ implies $a_i \in A$ $a_j \subseteq M$. A similar argument takes in case of i > j, So we conclude that M is an m-system and this completes the proof.

IV SEMI PRIME IDEALS

4.1 Theorem: An ideal Q in ring R is semi-prime ideal in R iff B(Q)=Q

Proof: Let Q be semi-prime ideal clearly, $Q \subseteq B(Q)$ Let us assume that $Q \subset B(Q)$ and seek a contradiction .Since $Q \subset B(Q)$, So let a $\epsilon B(Q)$ with a $\notin Q$

Now, Q is semi-prime ideal therefore C(Q) is an n-system and $a \notin Q \Rightarrow a \epsilon C(Q)$ therefore above theorem there exists an m-system M such that $a \epsilon M \subseteq C(Q)$

Now, a ε B (Q) \Rightarrow by definition of B(Q), M \cap Q $\neq \phi$

Since $M \subseteq C(Q) \Rightarrow M \cap Q \subseteq C(Q) \cap Q = \phi$

 \Rightarrow M \cap Q = ϕ , which give contradiction and this gives proof of the theorem.

4.2 Theorem: If the descending chain condition (d.c.c) for right ideals holds in a ring R, every nil right ideal in R is nilpotent.

Proof: Let N be a non-zero nil right ideal in R

Since $N \supseteq N^2 \supseteq N^3 \supseteq \dots$,

by descending chain condition, there exists a positive integer n such that $N^n = N^{n+1} = N^{n+2} = \dots$

We shall prove that $N^n = (0)$ for our convenience, let us set $M = N^n$. Let us assume that $M \neq (0)$. Since $M^2 = MM$ = $N^n N^n = N^{2n} = N^n = M \implies M^2 = MM = M \neq (0)$

Now, consider the set τ of all right ideals A in R such that AM \neq (0), that is,

 $\tau = \{ A \text{ is right ideal in } R / AM \neq (0) \}$

Since N is right ideal in R and MM \neq (0)

 \Rightarrow M $\epsilon \tau$ implies that τ is non-empty set

Now, d.c.c. assume that there exists a right ideal B which is minimal ideal of τ [9]

Since B $\varepsilon \tau \Rightarrow$ BM \neq (0), there exists an element b of B s.t bM \neq (0).

Now, bM is right ideal in R such that $bM \subseteq B$ and $(bM)M = bMM = bM^2 = bM \neq 0$

 \Rightarrow bM is an element of set τ , bM \subseteq B. Now, B is minimal element of τ , we have bM = B.

In particular, these exists an element m of M s.t bm = b

Now, $bm^2 = bmm = (bm)m = bm = b$

 $bm^3 = b m^2m = bmm = b m^2 = bm$

 $b = bm = bm^2 = bm^3 = \dots = bm^k = bm^{k+1} = \dots$

Since m ϵ M, M is nil ideal \Rightarrow m is nilpotent \Rightarrow m^k = 0 for some positive integer k [10]

 \Rightarrow b m^k = 0 since b m^k = b

$$\Rightarrow$$
 b = 0

Hence bM = (0) which is a contradiction and therefore, we conclude that M = (0), that is, Nn = (0) and thus, N is nilpotent.

Reference:

- [1] Neal H. McCOY The Theory of Rings, The Macmillan Company, New York, London.
- [2] P.F.Smith, Rings with every proper images a principal ideal rings, American Mathematical Society.
- [3] H.Paley and P.M.Weichsel-A First Course in Abstract Algebra, Holt, Rinehart and Winston, Inc.
- [4] G.Higman, The units of group -rings Proc. London Mathmatical Society.
- [5] S.Perlis and G.L.Wlaker , Abelian group algebras of Finite order, Trans American Mathematical Society.
- [6] R.A.Dean -Elements of Abstract Algebra, John Wiley And Sons, Inc, Newyork and London
- [7] D.S.Passman ,The Algebraic Structure of Group Rings,John Wiley and Sons,Newyork.
- [8] Howard H.Mitchell, Transactions of the American Mathematical Society.

[9] Foundations of Module and Ring theory, Robert Wisbauer, University of Dusseldorf, Gordon and Breach Science Publishers.

[10] Victor Camillo ,Chan Yong Hong,Nam Kyun Kim,Yang Lee,Peace P Nielsein: Nilpotent Ideals in polynomial and power series rings.