
IInntteerrnnaattiioonnaall JJoouurrnnaall ooff EElleeccttrroonniiccss EEnnggiinneeeerriinngg ((IISSSSNN:: 00997733--77338833))

 VVoolluummee 1111 •• IIssssuuee 22 pppp.. 1111--1177 JJuunnee 22001199--DDeecc 22001199 wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 11

PPeerrffoorrmmaannccee CCoommppaarriissoonn ooff AAddddeerr AArrcchhiitteeccttuurreess

D A Madhura
1
, Rakesh M B

2

1
Student,

2
Assistant Professor, Dept. of Telecommunication, Siddaganga Institute of Technology,

Tumkur, karnataka

Abstract: Adders are one of the most desirable entities in processor data path architecture. Since long, VLSI engineers
are working towards optimization and miniaturization of adder architectures to ultimately improve the performance of

processors. As the technology is scaling down, challenges towards optimization are also increasing. Three well known

adders are Carry Look Ahead adder, Koggestone adder and Brent Kung adder, which are all parallel adders. The

limitation of rippling effect of carry in Ripple Carry Adder(RCA) is overcome by CLA,but the area required is more
than RCA. Koggestone Adder(KSA) has a lesser propagation delay and has lower fan-out at each stage which in turn

increases performance. However,the area required for this adder increases. Brent Kung Adder(BKA) has less wiring

congestion with better performance and also requires less area for the implementation than KSA. But the propagation

delay increases. In this paper the comparison of these three adders is done in terms of propagation delay and area.These
adders’ design is implemented using the Verilog code on XILINX 14.7 tool.

Keywords: Adder,Verilog,Xilinx,Propogarion delay,Area,VLSI.

1. Introduction

Adders are the key components in general purpose microprocessors and digital signal processors. They also

find use in many other functions such as subtraction, multiplication and division. As a result, it is very

pertinent that its performance augers well for their speed performance. Furthermore, for the applications such

as the RISC processor design, where single cycle execution of instructions is the key measure of performance

of the circuits, use of an efficient adder circuit becomes necessary, to realize efficient system performance.

Additionally, the area is an essential factor which is to be taken into account in the design of fast adders.

Towards this end, high-speed, low power and area efficient addition and multiplication have always been a

fundamental requirement of high-performance processors and systems. The major speed limitation of adders

arises from the huge carry propagation delay encountered in the conventional adder circuits, such as ripple

carry adder and carry look adder.

Ripple carry adder: Multiple full adder circuits can be cascaded in parallel to add an N-bit number. For an N-

bit parallel adder, there must be N number of full adder circuits. It includes a series of full adders equivalent

to the number of bits. The first full adder will be provided with first bits of both two numbers say (A (0) and

B (0)) along with input carry say Cin. The output of first full adder will be the first bit of sum and a carryout,

which will be rippled to the next full adder, and this process continues. Hence, the name Ripple Carry Adder.

Propagation delay is time elapsed between the application of an input and occurrence of the corresponding

output. Although the area consumption of RCA is less, the delay in the circuit is high. The RCA is the

combination of low area consumption and high delay time compared with other adders [1].

Carry Look Ahead adder: The Carry Look Ahead adder provides a better speed in obtaining the result, as the

carries in the intermediate stages will be calculated beforehand using carry generate and carry propagate

regardless of input carry. Hence, it is called as Carry Look Ahead adder. The extra blocks of this adder are

the carry propagate and carry generate, where the carry propagate will be propagated to the next stages and

the carry generate is responsible for the advance generation of carry irrespective of input carry given to the

first stage. The drawback of this adder is that it involves complex circuitry and the hardware gets complicated

as the number of bits increases [2]. Ripple Carry Adder consumes less area but takes more time for

execution. Carry Look Adder consumes same area as that of RCA but executes the operation in lesser time in

comparison. Carry Save Adder consumes more area as well as more time for execution [1].

Koggestone adder: The Koggestone adder is a parallel prefix form carry look-ahead adder. The architecture

consists of three blocks, which are pre-processing, carry generator and post processing blocks. In KSA, for

each block a PG (Propagation Generation) block is generated. Propagation P is calculated by Xor operation

and Generation G is calculated by AND operation. Lastly, first level propagate bits are Xored with carry bits

to obtain sum. This is the fastest adder at the cost of area [4].The propagation delay is reduced compared to

other form of adders. The KSA requires the highest cell area[3]. This is expected since extra FCO blocks are

required in order to generate the sum out and Cout results in parallel.

http://www.csjournals.com/

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff EElleeccttrroonniiccss EEnnggiinneeeerriinngg ((IISSSSNN:: 00997733--77338833))

 VVoolluummee 1111 •• IIssssuuee 22 pppp.. 1111--1177 JJuunnee 22001199--DDeecc 22001199 wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 12

Brent Kung adder: BKA is a type of parallel prefix adder that consists of BKA pre-processing stage, BKA

parallel prefix network and BKA post processing stage for computation of summation and output carry of

input bits [5]. Brent–kung has the lowest propagation delay compared to all the existing adders. They are

based on reducing carry computation to a “prefix” computation. The Brent–Kung adder has been chosen first

for efficient QCA realization in view of the (relatively)small growth in the number of associative operations

as a function of the adder size[6].This adder requires fewer modules to implement than the Koggestone

adder. It is much simpler to build and contains far fewer connections to other modules, which also contributes

to its simplicity. Major disadvantage of this adder is fan-out. Fan-out may split and weaken the current

propagating through the adder.

2. Adders

An adder is a digital logic circuit that executes an arithmetic operation such as addition, subtraction. It is

also used in processor to calculate table indices, addresses, and similar operation.The basic adder types are

half adder (HA) and full adder (FA) as shown in Figure 1. Half adder basically adds two binary digits a and

b and produce two output signals sum s and carry C. The carry signal indicates an overflow into the next

digit of a multi-digit addition. HA can be implemented using XOR gate and AND gate according to

equations 1 and 2. In contrast, FA adds three binary digits, often written as a, b and c, and produce two

output signals sum s and carry C. FA can be implemented using equations 3 and 4.[6]

S = a⊕b

C = a.b

S = (a ⊕ b)⊕c

C = (a ⊕ b)⊕c + a.b

Figure 1. Modules of basic adders

A.Carry Look ahead Adder (CLA)

CLA can be constructed using two levels[2]. The first level is called a Partial Full Adder (PFA). This part is
responsible for generate and propagate the carry to the second level. For N-bit CLA, the two n-bit inputs a[n
− 1 : 0] and b[n − 1 : 0] to be added are used to generate the carry propagate p[n − 1 : 0] and carry generate
g[n − 1 : 0] signals to be supplied to the CLA at bit i.

pi = ai ⊕ bi

gi = ai · bi

The output sum can be expressed according to the below equation, where ci is the carry output of each stage.

si = pi ⊕ ci

Thus Pi and Gi are generated from pre-processing block. This stage is the part that differentiates the
performance of an adder. On addition of pre-processing block delay of the adder can be reduced. The signals
then proceeds to the next stage, Prefix Carry Tree to generate Ci. On the other hand, the final stage that is
post-processing block which is aimed to get the final adder result Sum along with the output carry as shown
in figure 2.

http://www.csjournals.com/

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff EElleeccttrroonniiccss EEnnggiinneeeerriinngg ((IISSSSNN:: 00997733--77338833))

 VVoolluummee 1111 •• IIssssuuee 22 pppp.. 1111--1177 JJuunnee 22001199--DDeecc 22001199 wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 13

Figure 2.16-bit carry look ahead adder

B.Kogge Stone Adder (KSA)

 KSA can be easily implemented by analysing it in terms of three parts:

• Pre-processing : This step includes computation of generate and propagate signals that corresponding to
each pair of bits in a and b. The generate and propagate signals are given by the equations below:

• Prefix carry tree: This part differentiates KSA from other adders and is the reason behind its high
performance. This step includes computation of carries that corresponding to each bit. This part uses group
propagate and generate signals which are given by the equations below:

The notations 𝑝𝑖:𝑗 and 𝑔𝑖:𝑗 denote to group-propagate and group-generate respectively and for the group that

includes bit positions from i to j. k represents the logic level from where the input is produced.

• Post processing stage: This step is the final step to all adders of the (carry look ahead) family. It includes
computation of sum bits which is given by the equation below:

Figure 3. 16-bit KoggeStone adder

http://www.csjournals.com/

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff EElleeccttrroonniiccss EEnnggiinneeeerriinngg ((IISSSSNN:: 00997733--77338833))

 VVoolluummee 1111 •• IIssssuuee 22 pppp.. 1111--1177 JJuunnee 22001199--DDeecc 22001199 wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 14

C. Brent Kung Adder (BKA)

Brent-Kung Adder (BKA) is a parallel prefix adder that was developed by Brent and Kung in 1982. The idea
of Brent and Kung adder is to combine propagate signals and generate signals into groups of two by using the
associative property only. BKA is also belonged to carry look ahead adder family and can be implemented by
analysing it into three parts as following:

• Pre-processing: This step includes computation of generate and propagate signals that corresponding to
each pair of bits in a and b, and it is the same process of other CLA family. The generate and propagate
signals are given by the equations below:

• Prefix carry tree: This part includes computation of carries that corresponding to each bit, and it is different
from other CLA family. The equations below shows how propagate and generate signals are calculated in
BKA

The smart idea of this design is to compute prefixes for 2-bit groups first. These are then used to find prefixes
for 4-bit groups, and turn to find prefixes for 8-bit groups, etc. The issue of this design is that the propagate
and generate signals take more stages than KSA to be calculated. Figure 4 shows 16-bit BKA.

• Post processing stage: This step is the final step to all adders of the (carry look ahead) family. It includes
computation of sum bits which is given by the equation below:

Figure 4.16-bit Brent kung adder

Brent-Kung Adder features with low network complexity comparing to Koggestone Adder. The low network

complexity assists to reduce the area of adder resulting in reducing the power consumption as well. This feature

makes BKA more efficient than KSA, which has more black competition nodes and long wires. On the other

hand, BKA has more stages (logic levels) compare to KSA. Having more competition stages leads to a slower

adder. For example, as shown in Figure 4, 16-bit KSA needs only three stages to calculate the carries while

BKA in Figure 3.14 needs five stages to get the carries calculated. Hence, KSA is more efficient than BKA in

terms of speed.

http://www.csjournals.com/

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff EElleeccttrroonniiccss EEnnggiinneeeerriinngg ((IISSSSNN:: 00997733--77338833))

 VVoolluummee 1111 •• IIssssuuee 22 pppp.. 1111--1177 JJuunnee 22001199--DDeecc 22001199 wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 15

The number of blocks required in the BKA is less compared to KSA. Thus it overcome the limitation of the

Koggestone adder by consuming less area than KSA. But the path delay of the brent kung adder is more than the

Koggestone adder. Thus, there is a trade off between the delay and the area required.

3. Results

 All the three adders are simulated and synthesized using Xilinx 14.7 and hardware kit Spartan 6.

 A. Carry look ahead adder:

 Figure 5. Simulation result of Carry look ahead adder

 The waveform shows the addition of two 16 bit numbers. The sum is generated using Verilog code of carry

look ahead adder. Two inputs are considered as a= 16’b1111111111111111, b=16’b1111111111111111 and

Cin=0 which gives the sum as, S=16’b1111111111111110 and Cout=1.

B. Koggestone adder:

Figure 6. Simulation result of Koggestone adder

The waveform shows the addition of two 16 bit numbers. The sum is generated using Verilog code of

Koggestone adder. Two inputs are considered as a= 16’b1111111111111111, b=16’b0000000000011111 and

Cin=0 which gives the sum as, S=16’b0000000000011110 and Cout=1.

C. Brentkung adder:

Figure 7. Simulation result of Brentkung adder.

The waveform shows the addition of two 16 bit numbers. The sum is generated using Verilog code of Brent

kung adder. Two inputs are considered as a= 16’b1111111111111111, b=16’b1111111111111111 and Cin=0

which gives the sum as, S=16’b1111111111111110.

http://www.csjournals.com/

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff EElleeccttrroonniiccss EEnnggiinneeeerriinngg ((IISSSSNN:: 00997733--77338833))

 VVoolluummee 1111 •• IIssssuuee 22 pppp.. 1111--1177 JJuunnee 22001199--DDeecc 22001199 wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 16

The carry look ahead adder calculates one or more carry bits before the sum, which reduces the wait time to

calculate the result of larger number of bits. The speed of this adder is independent of the number of bits.

However, the process in obtaining carry generate and propagate bits depends on the cout from the previous bit to

complete. Hence, the time delay is not solved completely by Carry look ahead adder. Area and power

consumption required for CLA is less compared to KSA and BKA.

KSA and BKA overcome the time delay compared to CLA. In terms of propagation delay KSA is a better

choice than BKA. In terms of area between the two parallel prefix adders, BKA proves to be a better choice.

Though the area increases in BKA when number of bits increases, it doesn’t increase as drastically as KSA. The

power consumption required for BKA is less compared to KSA. Thus there is a tradeoff between BKA and

KSA.

Figure 8. Implementation using FPGA.

The comparison between the adders are shown below,

Table 1: Comparison between adders

Adders

Propagation delay

Area

CLA(16 bit)

13.05ns

No. of LUTs: 25

Logic Slice: 25

KSA(16 bit)

9.54ns

No. of LUTs: 71

Logic Slice: 71

BKA(16 bit)

12.04ns

No. of LUTs: 24

Logic Slice: 24

4.Conclusions

 It is shown that the results obtained for Parallel Prefix Adders are better than the serial adders in terms of

delay and at the same time there is a trade-off with the area occupied.Koggestone and Brent-Kung adders

are designed and implemented using FPGA kit. These high speed adders are compared against Carry look

ahead adder. All of these adder architectures are implemented using verilog code with Xilinx14.7 tool. The

propagation delay and chip area are calculated. Kogge Stone Adder architecture result shows improvement

in propogation delay from Carry look ahead but area increases. Brent Kung adder requires less area

compared to that of Koggestone adder but propogation delay increases.

References

[1]. Bhavani Koyada,N. Meghana,Md. Omair Jaleel and Praneet Raj Jeripotula,“A Comparative Study on Adders”,

International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET),pp. 2226-
2230,2017.

[2]. Kartheek Boddireddy,Boya Pradeep Kumar and Chandra Sekhar Paidimarry,“ Design and implementation of area
and delay optimized carry tree adders using FPGA”, International Conference on Computing and Communication
Technologies,pp.1-6,2014.

http://www.csjournals.com/

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff EElleeccttrroonniiccss EEnnggiinneeeerriinngg ((IISSSSNN:: 00997733--77338833))

 VVoolluummee 1111 •• IIssssuuee 22 pppp.. 1111--1177 JJuunnee 22001199--DDeecc 22001199 wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 17

[3]. Nidhi Gaur,Devyani Tyagi,Deepika and Anu Mehra , “Performance comparison of adder architectures on 28nm
FPGA”, 2nd International Conference on Advances in Computing, Communication, & Automation
(ICACCA),pp.1-5.2016.

[4]. Lee Mei Xiang, Muhammad Mun'im Ahmad Zabidi, Ainy Haziyah Awab and Ab Al-Hadi Ab Rahman,“ VLSI
Implmentation of a Fast Kogge-Stone Parallel-Prefix Adder”, Journal of Physics: Conference Series,Vol-
1049,2018

[5]. N. Udaya Kumar,K. Bala Sindhuri,K. Durga Teja and D. Sai Satish,“ Implementation and comparison of VLSI
architectures of 16 bit carry select adder using Brent Kung adder”, Innovations in Power and Advanced Computing
Technologies (i-PACT),pp.1-7,2017.

[6]. Kunjan D. Shinde,Jayashree C. Nidagundi,“ Design of fast and efficient 1-bit full adder and its performance
analysis”, International Conference on Control, Instrumentation, Communication and Computational Technologies
(ICCICCT), pp.1275-1279,2014.

http://www.csjournals.com/

