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Abstract: This paper proposes three new approaches of rule base generation for a Fuzzy system from numerical data 
and compares their performance with the approaches that have been used in literature for either rulebase generation or 

fuzzy model identification. A total of nine optimization algorithms are implemented for the rulebase generation problem 

including the new approaches GWO, CSO and DE along with the existing methods based on GA, BBBC, PB3C, MA, 

FA and PSO. All the approaches are implemented in MATLAB and their performance is compared over a 
representative example. We compare these approaches on two parameters namely accuracy in terms of MSE and 

convergence time for that given MSE parameter. We observe that BBBC, PB3C and GWO algorithm gave same best 

MSE performance followed by MA, GA, CSO, PSO, DE and FA in that order. As far as convergence time for the 

problem of rapid fuzzy battery charger is concerned, we found that BBBC is the fastest followed by PB3C and GWO. 
Keywords: GA, DE, BBBC, PB3C, FA, MA, CSO, GWO, PSO, MSE, Rulebase Generation, Fuzzy Model 

Identification, Convergence time. 

 
 

I Introduction 

 
Rulebase generation is an important step in designing rule based fuzzy models. Extracting knowledge or 
rulebase from a given numerical data is a complex problem that has drawn the attention of research 
community in the recent past. 

Many classical as well as soft-computing methods have been applied to generate rulebase for specific 
systems. As each system has different number of inputs, outputs and their membership functions, the rulebase 
generation is generally an application specific problem. In a multi-input single-output (MISO) system the 
maximum number of rules includes every combination of input membership functions in antecedent part. As 
the number of inputs and their membership functions increases the complexity in finding the appropriate set 
of consequents also increases. There are many rulebase minimization techniques which reduce the number of 
rules by eliminating redundant rules and by merging the rulebase [1,2]. The rulebase generation problem can 
be combined with the problem of parameter estimation and both the problems can be solved simultaneously 
or separately [3].  

Fuzzy Model Identification (FMI) is a well established field and there are many methods available in 
literature based on clustering [4], Fuzzy C Means Clustering (FCM) [5,6], Fuzzy C Regression Models 
(FCRM) [7], Modified FCRM [8], subtractive clustering [9-12], Modified Gath-Geva algorithm [13], Neural 
Networks [14-16], Genetic Algorithms (GA) [18- 25], Particle Swarm Optimization (PSO) [26-29], Ant 
Colony Optimization (ACO) [30-31], Adaptive Neuro-Fuzzy Inference System (ANFIS) architecture [32,33], 
Firefly Optimization (FA) [34], Big Bang Big Crunch (BBBC) [35,36] and Parallel Big Bang Big Crunch 
[37], Extended Kalman Filter [38], Gravitational Search algorithm (GSA) based Hyperplane Clustering 
algorithm (GSHPC) [39] and Root mean square error minimization [40] techniques. Hodashinsky et al. [41] 
proposed Monkey Algorithm for rule base extraction for a set of classification problems. 

Many a times these algorithms are used jointly to solve the FMI problem eg. Hybrid of gradient descent and 
least means squares [42], FCRM and PSO [43,44], Hough Transform and Clustering [45], Evolutionary 
Programming and Least Squares estimate [46], FCM and GA [47], FCRM and Gradient Descent Algorithm 
[48], FCM and Least Squares estimate [5,49], Fuzzy Discretization Technique and Orthogonal Estimator [50] 
based approaches have been proposed in literature. Hybrid techniques are usually hierarchical where two 
algorithms are used at different levels of hierarchy or coarse tuning of parameters is performed with one 
method and fine tuning with the other. 

A rulebase generation problem can be framed as a minimization (or maximization problem) and can be 
effectively solved by using biologically / nature inspired techniques. This paper proposes three new soft 
computing based approaches to rulebase generation from given numerical training data of Ni-Cd rapid 
battery charger. These new approaches are Grey Wolf Optimization (GWO) [51], Chicken Swarm 
Optimization (CSO) [52] and Differential Evolution (DE) [53,54] based approaches. In addition to these, for 
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comparison purpose the following optimization algorithms i.e. Genetic Algorithms (GA), Big Bang Big 
Crunch (BBBC) [55,56], Parallel Big Bang Big Crunch (PB3C) [57], Firefly Algorithm (FA) [58,59], 
Monkey Algorithm (MA) [60] and Particle Swarm Optimization (PSO) [61] are also applied to identify the 
rule consequent of each fuzzy rule. All these approaches are implemented in MATLAB and their 
performance over a rapid battery charger example is evaluated. In these algorithms, initially a random 
population/ multi population of solutions is generated and as iterations progress the population is modified to 
improve the value of objective function. Generally in minimization algorithms the objective function is the 
performance error and it gets reduced with increase in iteration steps. We have considered the algorithm 
accuracy as well as the convergence time as the performance parameters. 

The paper is organized as follows. Section I of the paper presents introduction. Section II and III briefs the 
implemented algorithms and problem formulation respectively. Simulation, results and comparison is given 
in section IV and section V concludes the paper. 

 

II Implemented Algorithms 

 
It is evident from the literature on Fuzzy Model Identification that there is a good scope of applying soft 
computing algorithms to the rulebase generation. In this work we have applied nine soft computing 
techniques to extract rulebase from a Ni-Cd Battery Charger dataset. The selected algorithms for this research 
are meta-heuristics based on evolution, physics and swarm intelligence. The evolutionary techniques used 
here are Genetic Algorithms and Differential Evolution which are based on the natural concept of 
reproduction. These are population based heuristics where next generation is generally but not always better 
than the parent population and has an improved value of objective function. The child population is created 
by selection, crossover and mutation of individuals in parent population.  

The physics based methods employed here are Big Bang Big Crunch (BBBC) and Parallel BBBC (PB3C). In 
these methods a random population of search agents communicates and moves throughout the search space 
according to some set of physical rules. BBBC is inspired by the evolution of the universe and mainly 
consists of two phases i.e. Big bang phase and Big Crunch phase. In the Big Bang phase, a population of 
random solutions is generated whereas, in the Big Crunch phase, randomly distributed particles are all 
contracted towards the centre of mass. In contrast with BBBC, PB3C is a multi-population optimization 
technique that performs local as well as global search in a set of populations.  

Swarm Intelligence mimics the social behavior of swarms such as search of food by ants in Ant Colony 
Optimization (ACO) [62], hunting process of wolfs in Grey Wolf Optimizer (GWO) [51], flocking of birds in 
Particle Swarm Optimization (PSO) [61], hierarchy of chicken swarms in Chicken Swarm Optimization 
(CSO) [52] and mountain climbing of monkeys in Monkey Algorithm (MA) [60]. Monkey Algorithm 
proposed by Zhao et al. [60] is based on the simulation of mountain climbing process of monkeys and mainly 
consists of climb, watch-jump and somersault processes which are repeated for iterations to find the highest 
mountaintop. PSO, developed by Eberhart and Kennedy in 1995 [61], refers birds or fish as particles and is a 
population based stochastic technique inspired by the behavior of flocking birds during migration to an 
unknown destination or fish schooling. Sayedali Mirjalili et al. in 2014 [51] proposed a new meta-heuristic 
named Grey Wolf Optimizer, which mimics the leadership hierarchy and hunting mechanism of grey wolves 
in nature. CSO proposed by Xian-bing Meng et al. in 2014 [52] is a bio-inspired optimization technique and 
mimics the hierarchy of chicken swarms and their behavior. Each chicken swarm group consists of a rooster, 
many hens and chicks. Chickens in these swarms follow different laws of motion and hence there exist 
competitions between different chickens. Few soft computing methods like ACO, FA, MA, PSO, BBBC, 
PB3C have already been used in fuzzy system identification and in the present work out of three newly 
proposed approaches two (GWO and CSO) belong to the swarm intelligence based category.  

 

III Problem Formulation 

 
The rulebase of rapid Nickel-Cadmium (Ni-Cd) battery charger [63] is generated by using various soft 
computing algorithms with an objective to find an optimal amount of charging current to charge the 2AA Ni-
Cd batteries in quickest possible duration with no harm to these. Each row of data contains the values of two 
inputs (Temperature and Temperature gradient) and an output (Charging Current) combination. A small 
training and testing data can be extracted from a database of 561 input output combinations. The input 
membership functions are determined by applying modified Fuzzy C means Clustering technique [64]. The 
universe of discourse of Temperature (T = 0°C to 50°C) is covered by 3 fuzzy sets i.e. Low, Medium and 
High and Temperature Gradient (dT/dt) is partitioned into two fuzzy sets i.e. Low and High. The membership 
functions of Temperature and Temperature Gradient are shown in Fig. 1 and 2 respectively. The number of 
rules formed in this case is 6 and are given below.  
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Fig. 1.  Input 1: Fuzzy sets for low, medium and high temperature 

 

 
Fig. 2.  Input 2: Fuzzy sets for normal and high temperature gradient. 

 

Rule1: If Temperature is Low and Temperature_gradient is Low then Charging Current is C1 

Rule2: If Temperature is Low and Temperature_gradient is High then Charging Current is C2 

Rule3: If Temperature is Medium and Temperature_gradient is Low then Charging current is C3 

Rule4: If Temperature is Medium and Temperature_gradient is High then Charging current is C4 

Rule5: If Temperature is High and Temperature_gradient is Low then Charging current is C5 

Rule6: If Temperature is High and Temperature_gradient is High then Charging current is C6 

In order to identify the rulebase of above fuzzy system, we consider all outputs as singletons [65] and hence 
the problem of rulebase generation is encoded as the determination of constants C1 to C6 (with Lower bound 
= 0A and Upper bound = 4A) such that the Mean Squared Error (MSE) [32] of the system, implemented 
using the extracted rulebase, is minimum. MSE is considered as the performance index of the obtained fuzzy 
model and the objective of applying soft computing techniques is to minimize it. The mathematical 
expression for MSE is as given below in equation (1). 

𝑀𝑆𝐸 =
1

𝑁
  (y i − y′(i))2 

𝑁

𝑖=1

                                      (1) 

𝑦 ′ 𝑖 =  
 𝑤𝑖𝑐𝑖

𝑁
𝑖=1

 𝑤𝑖
𝑁
𝑖=1

                                                             (2) 

where y(i) is the desired output as provided in database, y'(i) is the computed output of model and N is the 
number of data points used for model validation. The output y'(i) is computed by using equation (2) where  
wi and ci are composed value and consequent value of i

th
 rule.  

 

IV Simulation Results and Discussion 

 
In order to evaluate the performance of these 9 algorithms, we implemented all these approaches in 
MATLAB. The training dataset used here is taken from [34] and is placed as Appendix A. The implemented 
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software allows the user to select the optimization algorithm for rulebase generation of the battery charger by 
invoking the menu as shown in Fig. 3. After the generation of rulebase the rules with the extracted value of 
consequents are displayed in the figure window alongwith the convergence curve for the selected algorithm 
as shown in Fig. 4 and 5 respectively.      
   

 
Fig. 3.  Screenshot of menu to opt for choice of Optimization Algorithm 

 

 

Fig. 4.  Screenshot of generated rulebase 

 

 
Fig. 5.  Graph representing convergence of MSE as the iterations 

 

Rulebase generated for Battery Charger FLS using 

Big Bang Big Chrunch (BBBC)

------------------------------------------------------------------------------------------------------------------------------------------------------

Rule1: If Temperature is Low and Temperature_gradient is Low then charging current is 4

Rule2: If Temperature is Low and Temperature_gradient is High then charging current is 4

Rule3: If Temperature is Medium and Temperature_gradient is Low then charging current is 3.0961

Rule4: If Temperature is Medium and Temperature_gradient is High then charging current is 2.0473

Rule5: If Temperature is High and Temperature_gradient is Low then charging current is 0.12721

Rule6: If Temperature is High and Temperature_gradient is High then charging current is 0.077932

------------------------------------------------------------------------------------------------------------------------------------------------------

MSE of the Battery Charger with the selected rulebase is 0.021575

Execution time =  2.9687sec

------------------------------------------------------------------------------------------------------------------------------------------------------
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Table 1 shows the parameters used for simulation of these approaches. We conducted 51 trials for each of the 
algorithms on a Dell laptop with Intel® Core i3-4005U CPU @ 1.70 GHz processor and 4GB of RAM.  

Table 1 

Selected values for algorithm specific desired parameters 

Algorithm Selected Parameter values 

GA 

Number of candidate solutions = 200 

Number of generations = 600 

Crossover probability = 0.8 

Mutation probability = 0.2 

Mutation interval = 20 

DE 
Number of candidate solutions = 10 

Crossover Probability = 0.8 

BBBC 
Number of candidate solutions = 10 

Update = (0.4 * rand * 4)/ generation id 

PB3C 

Number of parallel populations = 3 

Number of candidate solutions = 4 

Update = (0.4 * rand *4)/ generation id 

FA 

Number of candidate solutions = 50 

alpha = 0.02 

beta = 1 

gamma = 0.8 

MA 

Number of candidate solutions = 10 

Step length = 0.02 

Eye sight = 0.5 

Somersault Interval = [-1,1] 

CSO 

Number of candidate solutions = 20 

Rooster percentage = 0.35 

Hen percentage = 0.45 

Mother percentage = 0.15 

GWO 
Number of candidate solutions = 10 

 'vector a' decreases from 0.2 to 0    

PSO 

Number of candidate solutions = 100 

Maximum Velocity = 1 

Update in velocity = [0.02, 0.1] 

phi1 = phi2 = 2 

 

The MSE performance of each algorithm is listed in Table 2. In order to evaluate the convergence rate, we 
fixed the target accuracy of 0.021575 and evaluated the convergence time. It is found that except for BBBC, 
PB3C and GWO none of the other approaches could converge for the given accuracy of 0.021575. The time 
to converge to the minimum MSE by these three algorithms is presented in Table 3. Considering the 
performance of the other five approaches which could not converge consistently for the given accuracy we 
relaxed the accuracy target from 0.021575 to 0.02158. The MSE based performance for all approaches along 
with their convergence time and standard deviation is listed in Table 4. As shown in this table the standard 
deviation of MSE for 51 trials is nonzero for DE, CSO, FA and PSO which implies that these algorithms are 
not able to converge at the same value of MSE everytime. However the other 5 algorithms with standard 
deviation = 0 are consistent performers.  
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Table 2 

MSE Performance (51 trials) of all Algorithms 

 

Algorithm Worst MSE Mean MSE Best MSE 

GA 0.02170 0.021690 0.021689 

DE 0.12114 0.024156 0.021575 

BBBC 0.02158 0.021578 0.021575 

PB3C 0.02158 0.021578 0.021575 

FA 0.25416 0.047641 0.021587 

MA 0.02163 0.021599 0.021585 

CSO 0.02266 0.021878 0.021585 

GWO 0.02158 0.021579 0.021576 

PSO 0.02638 0.021979 0.021576 

 

Table 3 

Average convergence time to achieve Best MSE performance i.e. (0.02175) 

Algorithm Average Convergence Time (in sec) 

BBBC 0.347 

PB3C 0.475 

GWO 3.13 

 

Table 4 

Performance of all algorithms for target MSE = 0.02158 

Algorithm 
Average 

MSE 

Average Convergence 

Time (in sec) 

Standard 

Deviation 

GA 0.021690 6.988 0.000 

DE 0.024156 7.94 0.014 

BBBC 0.021578 0.347 0.000 

PB3C 0.021578 0.475 0.000 

FA 0.047641 3431.78 0.057 

MA 0.021599 428.76 0.000 

CSO 0.021878 153.65 0.003 

GWO 0.021579 3.13 0.000 

PSO 0.021979 54.375 0.001 

 

Table 5 

Convergence time of all algorithms for target MSE = 0.0242 

Algorithm Achieved MSE 
Average Convergence Time 

(in sec) 

BBBC 0.0234 0.0678 

PB3C 0.0234 0.127 

GWO 0.0241 0.493 

MA 0.0234 1.188 

GA 0.0241 7.357 

CSO 0.0237 1.04 

DE 0.0239 0.3039 

PSO 0.0236 1.863 

FA 0.0433 94.8 

 

We further relaxed the desired accuracy target to 0.0242 and conducted 51 trials for each of the algorithms. 
The convergence performance is placed in Table 5. From the table we observe that BBBC converged in the 
shortest mean time of 0.0678 sec followed by PB3C with the mean convergence time of 0.127sec followed 
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by GWO with 0.493 sec and MA 1.188 sec. It is also observed that out of 51 trials CSO did not converge for 
2 trials, DE for 4 trials, PSO for 5 trials and FA for 6 trials.  

From Tables 2 to 5 we observe that BBBC, PB3C, GWO and MA approaches outperformed other 5 
approaches in accuracy as well as time complexity. A look at the convergence rates also indicates that as the 
problem complexity grows, the performance of PB3C is likely to outperform all other approaches. 

 

V Conclusion 

This paper presented three new algorithms namely GWO, CSO, and DE for rulebase generation from the 
numeric training examples. We implemented these proposed approaches alongwith GA, FA, BBBC, PB3C, 
MA and PSO in MATLAB. We evaluated the performance of all the nine algorithms on two performance 
parameters namely accuracy and convergence time. The approaches were validated on a Dell laptop with 
Intel® Core i3-4005U CPU @ 1.70 GHz processor and 4GB of RAM. We conducted 51 trials for every 
approach. From the simulation results we conclude that BBBC, PB3C, GWO and MA give the best 
performance in that order on both performance parameters. CSO, DE, PSO, GA and FA were observed to be 
inferior to the other four approaches on both MSE and convergence time performance parameters.  
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APPENDIX A 

 

 

Data 

Point
Temperature

Temperature 

Gradient

Charging 

Current

1 0 0 4

2 30 1 4

3 37 0.2 4

4 40 0 3

5 40 1 2

6 41 0.5 2

7 42 1 1

8 43 0.5 1

9 43 1 0.5

10 44 0 0.1

11 44 0.4 0.1

12 45 0.1 0.1

13 45 0.5 0.1

14 50 1 0.1

Training Data

 


