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Abstract:-As there is a tendency for the positive signals to get cancelled by their negative counterparts, the
negative signals are strictly denied from being transmitted through wireless optical communication systems.
In order to attenuate this problem and to ensure the denial of the negative signal propagation the Flip-
Orthogonal Frequency Division Multiplexing (Flip-OFDM) splits the signal into positive and negative parts
and transmits them separately in two non-overlapping paths. At the receiver end an lIterative-OFDM
receiver is employed to reconstruct the data efficiently by subtracting the negative part from the positive
part. The major problem of an Iterative Flip-OFDM system is Peak to Average Power Ratio (PAPR) which
may limit the content boosting capabilities of Flip- OFDM signals. As a solution to this ever teasing
problem in this paper we proposed a novel approach for design and analysis of an iterative Flip-OFDM
receiver and to reduce the PAPR of Flip-OFDM signals using non-linear optimization approach. The
proposed approach is implemented and simulated in MATLAB environment and the simulation results
adjudged that the proposed approach is best in all aspects and outperforms all the existing approaches.
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Introduction

Due to its enormous potential in providing rich spectrum resources and high communication security,
an Optical Wireless Communication System (OWC)s has emerged as an attractive alternative for RF
circuits and systems , especially in indoor scenarios. Also, the convergence of illumination and
communication makes OWC to be one of the most important Eco technologies [1]. In a view to enable high
data rates and assuage inter-symbol interference (ISI), the Orthogonal Frequency Division Multiplexing
(OFDM) has been employed in OWC [2]-[4]. Since it is a common approach to employ intensity
modulation and direct detection (IM/DD) in OWC systems, the transmitted signals must be of real and non-
negative. Real temporal signals can be obtained by imposing Hermitian symmetry on the OFDM
subcarriers.
On the other hand, OWC still possesses some drawbacks. One restriction is that the available optical
transmit power is limited by eye safety standards [5-9]. And the issue of bipolarity in OFDM signals is
attenuated with various sophisticated and expensive schemes such as direct current (DC) biased optical
OFDM (DCO-OFDM) [10], asymmetrically clipped optical OFDM (ACOOFDM) [11] and pulse-
amplitude-modulated discrete multitone (PAM-DMT) [12]. There is a price paid with these three schemes.
DCO-OFDM adds a DC bias, which increases the power dissipation of the OFDM signal significantly.
ACO-OFDM and PAM-DMT do not need DC bias, but each has only half the spectral efficiency of DCO-
OFDM. The conventional Flip-OFDM receiver recovers the data by subtracting the negative signal block
from the positive one [13]. Even though his method is simple and straightforward, but it increases the noise
variance of the received symbols and reduces the performance of the OFDM receiver. A time-domain noise
filtering technique was proposed in [14] and investigated in [15] to improve the performance of the Flip-
OFDM, but the algorithm does not make full use of the signal structures. Hence in this context an iterative
receiver is proposed for Flip-OFDM by fully exploiting the structures of the received signals. Simulations
confirm that the proposed iterative receiver is superior to other receivers.

OFDM is an exceptional type of the multicarrier modulation technique that divides the entire frequency
selective fading channel into many orthogonal narrow band flat fading channels in which a high bit rate
data stream is transmitted in parallel over a number of low bit rate subcarriers there by substantially
reducing the inter symbol interference [16] and improved spectral efficiency. However the conventional
OFDM systems suffer from high PAPR, which necessitates a tight synchronization between the transmitter
and receiver otherwise leads to Carrier Frequency Offset (CFO) errors. High peak values in OFDM system
results from superposition of large number of statistically independent sub channels that can constructively
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sum up high peaks [17]. As number of carriers increases, PAPR also increases. The PAPR ratio is
approximately equal to N, where N is the number of sub carriers. High PAPR ratio results in amplifier to
work in large dynamic range which decreases the efficiency of power amplifier, DAC and ADC. Hence in
order to overcome these hard striking problems in a Flip-OFDM based OWC systems, in this paper we
proposed a novel approach for the design and analysis of an iterative Flip-OFDM scheme with relatively
reduced PAPR using a modified Selective Mapping (SLM) scheme.

Proposed Work

In this work we proposed a novel approach for designing an iterative Flip-OFDM receiver. The
proposed approach transmits the positive and negative signals on two consecutive OFDM sub frames. The
DCO-OFDM approach is replaced with a nearly equal and more spectrally efficient iterative Flip-OFDM in
OWC. As inconventional receiver for flip-OFDM, data is reconstructed by subtracting the negative
signal block from the positive signal block. The schematic block overview of an iterative Flip-OFDM
transmitter with N subcarriers is shown in Figure(1). To be certain that the time-domain signal is actually in
IM/DD systems, the input data vector =[X(0) X(1) X(2) X(3)....X(N-1)]" must be satisfy the Hermitian
symmetry property, i.e.,

N
X(k) =X*(N—k), k=123, g = 1

Be aware that X(0) and X(N/2 ) are on the whole set to zero considering the DC a part of OFDM signal is
left unused in useful purposes. Hence, the time domain signal vector x=[x(0) x(1) x(2) x(3) ....x(N-1)]
after inverse fast Fourier transform (IFFT) operation can be represented as

N-1

x(n) = \/LN ,Z:(; X(k)expi?@%)

N
_ 2 ?—1 j2mkn .
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Figurel. Schematic block overview of the Proposed Iterative Flip-OFDM receiver.

The signal x(n) ,is real and bipolar valued, can be decomposed as
x(n) =xt(n) + x~(n)
Here, the positive part and the negative part are defined as

x*t(n) = (x(n) ,x(n) = o)

0, x(n)< 0
_ _(x(n),x(n) <0
x(n) = (O, x(n) = 0)

To assure a nonnegative time-domain signal, the two component
xt =[xT(0),x*(1),x*(2),....,xT(N — 1)]7 and
x” =[x7(0),x (1), x~(2), .., x (N — 1]
are individually transmitted over two successive OFDM sub frames.
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Assuming the channel impulse response vector h = [h(0), h(1),h(2),h(3),...... h(N —=D]" is
constant over two consecutive OFDM sub frames, the received signal vectors in the frequency domain
are given by

Yt=HXt+Z%

Y"=HX +27Z~
Where H=diag(Wyh)
Xt =Wyx*t
X~ = Wyx~

Wy is the NXN Discrete Fourier Transform(DFT) matrix Z* and Z~ ~N(0,021) represent the noise vectors
of the two sub frames, respectively. The conventional receiver is easy and effortless, but it does not
absolutely utilize the structures of the received signals.. Within the following, a new receiver is
proposed through commencing the connection between the received signals Y+, Y~ and the input
signal x can e expressed as

x| = SCOx ; x| = SCOW,{H,

where S(X)=diag{sign(x)}

S(X)=diag{sign(Wix)}

1 H
[ly/:r] = [H + HWyS(X)Wy ]X 4 [éj]

~2lHw, sOwWl — H

the zero-forcing (ZF) estimator is used to reconstruct the information back because of its low complexity
and straight forwardness.
1[H + HWyS(X)Wi!

GX) ==
X) 2lHWySOWH — H

The ZF matrix can be obtained as
Tzr(X) = [6"X)G)] G (X)

Then the estimated input data of X is given by
~ Y+
X =Tzr(X) [Y_]
The matrix T, (X) is dependent on the information vector X, an iterative receiver can hence be proposed as

dec[[H'Y* —H™'Y1]],i=0

2O = dec(Tys ()?(H) [?—r]}l =1,..K

Where ‘i’ is the record of iteration, ‘K’ is the most extreme number of iterations. Especially in line-of-sight
channels. This response can be derived as

h(n) = c6(n)
Where ‘¢’ is a constant, §(n) is the Dirac delta function. Here

F105(n) = 5 {1 + sgnlxy* (m)+; {sgnlx(m)] - 1}y (n)

The conventional receiver incorporate a single fast Fourier transform (FFT) operation, it has a
complexity of O(N log N). In the proposed iterative receiver, the computational complexity is related to the
channel attributes. In non-line-of-sight (NLOS) channels, the iterative receiver has relatively a low
computational complexity per iteration because of the matrix inversion of the ZF estimator. In LOS
channels, the complexity of the iterative receiver is O(NlogN) per iteration due to the fact that matrix
inversion is eliminated.

Conventional selective mapping (SLM) is a method for PAPR reduction in which B statistically independent
alternative OFDM symbols are generated from the same OFDM symbol. These alternative OFDM symbols
are generated by multiplying the N modulated data symbols with B different phase vectors component wise
and then input to the B IFFT blocks of block size N. Finally an alternative OFDM symbol which has lowest
PAPR is selected and then transmitted. In general the PAPR of a OFDM signal is defined as the ratio of the
maximum instantaneous power to its average power.
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max

2
PAPR[x(t)] = LS LS gr[lx(t)l ]

In the next part of this work, we focused on reducing the PAPR to as smaller value as possible compared to
the conventional approaches using a modified Selective Mapping(SLM) with clipping process.Figurel shows
the proposed method that is modified selective mapping with clipping. High peaks are being clipped here to
remove PAPR problem by replacing the peak by average value. This concept of clipping of OFDM signal
can also be applicable to selective mapping for clipping the signal that have more high peak to average
power ratio and least probability of finding OFDM symbols. This proposed method will clip the signal
whose value is greater than 5db or 4db it can be set to an arbitrary value depending upon the requirement of
application. The proposed method to limit the PAPR value let the high power can handle PAPR value of 5db
or 4 db by this method we can use that information with little bit-error —rate. By the property of selective
mapping SLM selector selects the signal whose value is less then 4db or 5db and clip the high PAPR value

signal.
Results and Discussions

In this section, the software simulations are performed to verify the bit error rate (BER) performance of
the proposed iterative receiver. The number of subcarriers is 64, the length of cyclic prefix (CP) is 16, and
16-QAM is used for constellation mapping. For comparison, the BER curves corresponding to the noise
filtering receiver and the case in where the sign matrices are perfectly known (“lower bound”) are also

plotted.
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Figure 4. Iterative OFDM time signal. Figure 5. Samples of the OFDM Time Signals over
one symbol period.
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Figure 22. Overall Performance comparison of the proposed PAPR reduction technique with the others.
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Conclusion

In this project we proposed an approach for design and analysis of an iterative Flip-OFDM receiver to
counteract the issues of negative signal transmission through the OFDM channels in Optical Wireless
Communications. And after that, inorder to attenuate the problem of the increased Peak to Average Power
Power ratio in OFDM signal, we integrated a non-linear Selective Mapping (SLM) technique to reduce the
PAPR value to an appreciable lower value. The proposed Algorithm is designed, coded, implemented and
tested in the Matlab Environment successfully. The simulation results of the proposed approach adjudged
that the proposed approach is best in all aspects and outperforms all the existing methods and techniques.
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