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Abstract: The increasing transmission rates and link lengths of optical communication systems imply a 

better acquaintance of the influence of dispersion. As the transmission speed is increased, the influence of 

higher order dispersion is greater and must be understood. In this work we obtained a solution for a 

propagating pulse with third order dispersion. We could infer quantitavely the significance of third order 

dispersion on the pulse shape for high speed transmission systems. 

 

 

Introduction 

In recent years, there has been vast increase of applications in telecommunications sectors that need great 

amounts of bandwidth services such as interactive multimedia, video conferencing and streaming audio 

which has made the capacity of the existing optical fiber systems inadequate. Technologies such as Frame 

Relay and ATM are also requiring increased capacity. The number of Internet users is growing by many 

folds each year which in turn is also creating additional load and demand on the telephone access 

networks [11]. With the quick growth of the information industry throughout the world, more 

consideration is being given to optical fiber communication networks having much higher speed and 

larger capacity. In optical fiber communication system, dispersion is the major limiting factor as the bit 

rate and the transmission distance increases. Degradation of the performance of the system occurs due to 

increased inter-chirp interference and reduced optical power [1-11]. Dynamic dispersion compensation is 

becoming a concern of vital importance in high-speed optical fiber communication systems operating at 

40 Gb/s and beyond as such expansion of the transmission bandwidth results in signal waveform 

distortion. Even if the transmission bandwidth is limited to a single channel, third-order dispersion (TOD) 

causes pulses to have trailing ripples which decrease the performance of the ultrahigh speed optical 

transmission systems [1-11]. Therefore, in such a high bit rate system, it becomes increasingly significant 

to exactly compensate not only the second-order dispersion, but also the TOD or dispersion slope of the 

fiber. There have been a number of dispersion-managed (DM) techniques to compensate for the 

dispersion effects. Among the different dispersion compensation techniques, there are two methods that 

are very useful, one using the dispersion compensation fiber (DCF) and the other, using optical fiber 

Bragg Grating (FBG) [11]. However, examination of TOD effect for bit rate of more than 40 Gb/s with 



IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  EElleeccttrroonniiccss  EEnnggiinneeeerriinngg  ((IISSSSNN::  00997733--77338833))  
  VVoolluummee  1100  ••  IIssssuuee  11    pppp..  116633--116677      JJaann  22001188--JJuunnee  22001188                    wwwwww..ccssjjoouurrnnaallss..ccoomm       

 
 

AA  UUGGCC  RReeccoommmmeennddeedd  JJoouurrnnaall                         Page | 164 
 

actual values of TOD parameters is yet to be addressed. In the present paper, we have examined the 

impact of TOD on the pulse shape for ultra-high speed system considering group velocity dispersion 

(GVD) parameter with TOD and evaluated the performance in this ultra-high speed long-haul 

transmission.  

The qualities of optical solitons described so far are based on the NLS equation . when input pulses are so 

short that  T05 ps, it is essential to include higher-order nonlinear and dispersive effects through Eq.  
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where the pulse is assumed to propagate in the region of anomalous GVD (β20) and fiber losses are 

neglected (=0). The parameters 𝛿3,s, and 𝜏𝑅   administer, respectively, the effects of third-order 

dispersion (TOD), self-steepening,  and intrapulse Raman scattering. Their explicit equations are  

  

𝛿3 = 
𝛽3

6|𝛽2|

1

𝑇0
         (2)     

s = 1/𝜔0T0          (3)     

𝜏𝑅= TR/T0           (4) 

All three parameters changes inversely with pulse width and are insignificant for T0>1 ps. They become 

substantial for femtosecond pulses. As an example, 𝛿3 ≈0.029, s≈ 0.03, 𝜏𝑅 ≈0.1 for a 50-fs pulse (T0≈ 

30fs) propagating at  1.55 𝜇m in a standard silica fiber if we take TR = 3 fs. 

Third-Order Dispersion 

When optical pulses propagate relatively far from the zero-dispersion wavelength of an optical fiber, the 

TOD effects on solitons is little and can be considered perturbatively. To study such effects,let us set  s=0 

and τR= 0 in Eq. (1) and treat the 𝛿3 term as a small perturbation. 

Using reduced Euler-Lagrange  to determine how the soliton parameter evolve with  . Now by putting  

𝜖(u)=  𝛿3(𝜕3𝑢 /𝜕𝜏3) in those equation, it is easy to show that  amplitude 𝛿, frequency 𝜂, and phase 𝜙 of the 

soliton are not susceptible to TOD. on the contrary, the peak position q changes as  

𝑑𝑞

𝑑𝜉
 = -𝛿 + 𝛿3𝜂

2            (5) 

 

For a fundamental soliton with η=1 and δ= 0, the soliton peak shifts linearly with  as q(). Actually, the 

TOD slows down the  soliton and, consequently, the soliton peak is delayed by an amount that increases  

linearly with distance. This TOD-induced delay is insignificant in most fibers for  picosecond pulses for 

distances as large as ~100 provided that β2 is not nearly  zero. What happens if an optical pulse 
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propagates at or near the zero-dispersion  wavelength of an optical fiber such that β2 is nearly zero. 

Considerable work  has been done to understand propagation behavior in this regime. 

 Normalizing the transmission distance to LD=T0
3/β3      through   𝜉 ′= z/L’D, we obtain the following 

equation: 

𝜕𝑢

𝜕𝜉 ′
 - sgn(β3) 

𝑖 𝜕3𝑢

6 𝜕𝜏3 +  | 𝑢|2u =   0                        (6)     

where u = ÑU  with Ñ is described by 

Ñ2  =  
𝐿′𝐷

𝐿𝑁𝐿
  = 𝛾 P0T0

3/| 𝛽3|                       (7) 

Figure 1 & Figure 2 shows the pulse shape and the spectrum at 𝜉 ′=3 for Ñ=2 and compares them with 

those of the input pulse at 𝜉 ′=0. The most striking  feature is splitting of the spectrum into two well-

resolved spectral peaks [9-11]. These peaks denotes the outermost peaks of the SPM-broadened specta. 

since the red-shifted crest exists in the anomalous-GVD regime,  pulse energy within that spectral band 

can form a soliton. The energy in the further spectral band dissipates away easily because that part of the 

pulse experiences  normal GVD. It is the trailing part of the pulse that dissipates away with propagation 

because SPM generates blue-shifted components close to the trailing edge.  The pulse shape in Figure 1 

display a long trailing edge with oscillations that  continues to detach away from the leading part with  

 

 

Figure 1 Pulse shape  at z/L’D=3 of a hyperbolic secant pulse propagating at the zero-dispersion 

wavelength  with a peak power such that  Ñ=2. Blue curves show for comparison the initial profiles at the 

fiber input. 
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Figure 2  spectrum at z/L’D=3 of a hyperbolic secant pulse propagating at the zero-dispersion wavelength  

with a peak power such that  Ñ=2. Blue curves show for comparison the initial profiles at the fiber input. 

 

increasing 𝜉 ′. The significant point to note is that, owing to SPM-induced spectral broadening, the  input 

pulse not at all actually propagate at the zero-dispersion wavelength even if  β2= 0 initially. in fact, the 

pulse creates its own| β2| through SPM. The effectual value of β2  is larger for pulses with higher  peak 

powers. An attractive problem is whether soliton-like solutions exist at the zero dispersion wavelength of 

an optical fiber. Equation (6) does not appear to be integrable by the inverse scattering method. Numerical 

solutions show that for Ñ>1, a “sech” pulse evolves over a length 𝜉 ′ ~10/Ñ
2
 into a soliton that holds about 

half of the pulse energy. The residual energy is carried by  an oscillatory structure near the trailing edge 

that dissipates away with propagation. This nature of solitons have also been quantified by solving Eq. (6) 

approximately [4]. generally, solitons at the zero-dispersion wavelength  need less power than those 

occurring in the anomalous-GVD regime.  This can be seen by comparing Equations. 

N2= LD/LNL=P0T0
2/|β2| and Equation (6). To attain the same values of N and Ñ , the required power is 

smaller by a factor of T0|β2/β3| for pulses propagating at the zero-dispersion wavelength. 

Conclusions  

Higher order dispersion is the main factor limiting transmission length in high-speed optical single-mode 

fiber systems; it reduces significantly the amplitude and broadens the time width of the pulses for systems 

operating at  high speed. From the in-depth analyses, it has been found obvious that the influence of TOD 

should not be ignored for ultra-high bit rate systems. The outcome of this research will be useful for 

designing and implementing ultra-high speed long-haul optical fiber communication system 
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