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Abstract: A standard algorithm for LMS-filter simulation, tested with several convergence criteria is presented in this paper.
We analyze the steady-state mean square error (MSE) convergence of the LMS algorithm when random functions are used
as reference inputs. In this paper, we make a more precise analysis using the deterministic nature of the reference inputs and
their time-variant correlation matrix. Simulations performed under MATLAB show remarkable differences between
convergence criteria with various value of the step size.
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1. INTRODUCTION

Adaptive digital signal processing is the study of algorithms
and techniques which have the capacity to vary in sympathy
with changing statistical properties, characteristic of many
real signals. Such techniques have been successfully applied
in many application areas, for example, channel equalization
in communications beam forming for seismic prospecting,
EGG monitoring in medicine, analysis of multiphase flow
and the control of dynamic systems. [1-3]

The need for high-speed adaptive filters has prompted
the search for alternatives to the popular LMS algorithm.
One modification is the replacement of the prediction error
term in the LMS update kernel by its Sigma function. At the
same time, in noise and echo cancellation problems, reduced
residual noise variance often requires error filtering. [4]

The adaptive filter is based upon a Finite Impulse
Response (FIR) digital filter structure together with an
adaptation algorithm to adjust the coefficients of the filter.
The adaptation algorithm adjusts the coefficients of the FIR
filter so as to minimise some function of the error, e(k),
between the desired response, d(k), and the output of the
adaptive filter, y(k). Two families of adaptation algorithms
are to be investigated, namely Least Mean Square (LMS)
and Recursive Least Squares (RLS). [5]

2. LMS ALGORITHM

The least mean square (LMS) algorithm is widely used in
applications to adaptive filtering due to its computational
simplicity, unbiased convergence in the mean to the Wiener
solution, and the existence of a proof of convergence in a
stationary environment.[7]

The LMS algorithm is undoubtedly the most popular
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algorithm for adaptive signal processing. The popularity of
the LMS algorithm is to a large extent due to its
computational simplicity. Furthermore, it is generally felt
that its behavior is quite simple to understand and the
algorithm appears to be very robust. [8]

The LMS algorithm was developed by Windrow and
Hoff in 1959. The algorithm uses a gradient descent to
estimate a time varying signal. The gradient descent method
finds a minimum, if it exists, by taking steps in the direction
negative of the gradient. It does so by adjusting the filter
coefficients so as to minimize the error. A LMS algorithm
can be implemented as shown in Figure 1. [5]

Figure 1: LMS Implementation Using FIR Filter

The desired signal d(k) is tracked by adjusting the filter
coefficients w(k). The input reference signal x(k) is a known
signal that is fed to the FIR filter. The difference between
d(k) and y(k) is the error e(k). The error e(k) is then fed to
the LMS algorithm to compute the filter coefficients w(k + 1)
to iteratively minimize the error.[5]

The basic LMS algorithm approximately minimises the
mean square error J = E{e2 (k )} where the error is given by
d (k) – wT (k )x(k) and w(k) = [w
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coefficient vector of the adaptive filter of length L, and x(k )
= [x(k ), x(k – 1),..., x(k – L + 1)]T is the adaptive filter data
vector. The coefficient vector update equation for the LMS
algorithm is given by

w(k + 1) = w(k) + 2µx(k)e(k) (1)

Where the right hand term, x(k)e(k), is an instantaneous
estimate of the negative gradient of the error performance
surface J [Haykin], and µ is the adaptation gain. The
coefficient vector of the adaptive filter is generally initialised
to zero. [1]

The presence of feedback within the LMS algorithm,
that is the output error is used to adjust the coefficients of
the adaptive filter, may lead to instability. The adaptation
gain µ is therefore the key parameter which controls how
the adaptive filter behaves and it should be chosen to lie
within the range [Haykin].[1]

0 <µ>
1

xLP (2)

Where Px is the power of the input signal to the adaptive
filter.

From this last equation it is possible to show that in
order to guarantee convergence of the mean of the
coefficients, the convergence factor µ of the LMS algorithm
must be chosen in the range

0 <µ>
max

1

λ (3)

Where λ
max

 is the largest Eigen value of input signal
vector R. Hypothesis, which considers all vectors x(i)
statistically independent is questionable. It is not rigorously
valid when x(k) represents the elements of a delay line. [7]

The convergence time of the LMS algorithm depends
on the step size µ. If µ is small, then it may take a long
convergence time and this may defeat the purpose of using
an LMS filter. However if µ is too large, the algorithm may
never converge. The value of µ should be scientifically
computed based on the effects the environment will have on
d(n).

3. MATLAB SIMULATION AND RESULTS

This section describes parts of the sample MATLAB
program and results. The Program can be divided into four
parts: First employ the randn(N, 1) function within
MATLAB to generate x(k) which will have unity power and
zero mean, where N is number of system point. Secondly
using butter(2,0.25) for calculating first sysorder weight
value for the sysorder is 10.Thirdly add some error signal
as noise with input signal and taking N = 60 for training.
Finally start the algorithm Start with big step size µ for
speeding the convergence then slow down to reach the
correct weights w(k + 1).

Figure 2: Output Response y[k] and Estimated Output Response
d[k].

Figure 3: Estimated Error curve e[k] = d[k] – y[k]

Figure 4: Comparison of the Actual Weights and the Estimated
Weight

Figure 5: Convergence Curve of LMS Algorithm with Various
Step Size

The MATLAB simulation results are again shown in
Figure2 to Figure 5 for various µ. Figure 2shows the desired
output and estimated output, figure 3 shows Estimated Error
curve e[k] = d[k] – y[k], figure 4 shows the comparison
between Comparison of the actual weights and the estimated
weight and figure 5 shows Convergence curve of LMS
algorithm with various step size. The increase in step size
results in a significant improvement in terms of clock cycles
needed for an error to converge. This is confirmed in Figure
5, as it now takes about 2,000 clock cycles for the estimated
signal y(n) to closely track the desired signal d(n). The step
size, though, cannot be arbitrarily increased. A high value
can eventually cause the LMS algorithm to diverge and this
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causes the error to oscillate with high amplitude. The step
size, therefore, has to be scientifically computed based on a
number of criteria such as the sampling rate, channel
properties, signal properties, etc. In this particular example,
the frequency of the input sample is constant. Therefore,
only the change in the value of the input sample mattered.
As shown in Figures 4 and 5, the input sample changes by
0.01 every few clock cycles. This change must be adapted
by varying the coefficients. The step size was experimentally
varied to obtain faster convergence.

CONCLUSION

In this paper, we analyzed the steady-state MSE convergence
of the LMS algorithm using the adaptive filtering with
random variable input and IIR Butterworth filter. The
MATLAB simulation results are again shown in Figure 5
for various ì. The increase in step size results in a significant
improvement in terms of clock cycles needed for an error to
converge. The convergence of LMS filter using Butterworth
adaptive filter are simulated and give satisfactory results.
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