DESIGN AND IMPLEMENTATION OF ADAPTIVE PUBLIC TRANSPORT SYSTEM WITH LOW COST WIRELESS LINK AND SPECIALIZED PROTOCOL

Ranjana D. Raut¹, Vineet Kumar Goyal², and Nikhil Arora³

¹Associate Prof. Department of Applied Electronics and In-charge CIC, SGB Amravati University, Amravati, INDIA
E-mail: Rdr24164@rediffmail.com,
²Department of Electronics & Communication Engineering, MJRP University, Jaipur, INDIA
E-mail: vineet_eic@yahoo.com,
³Scientist/Engineer SD, ISRO Bangalore, INDIA
E-mail: nikhilele@gmail.com

ABSTRACT

This paper is about research to provide the solution for optimization of use of public transport, better services to users and various options to management to improve transport system with cost effective. Bus arrival Prediction Technology (BAPT) is the key technology of designing and implementation with low cost communication link and specialized protocol. With the help of GPRS based communication, the central station can connect the each bus station, and receiving all information about the current status of the every vehicle. Based on analysis of traffic density at central stand, it will update all bus stands with updated predicted time within stations. Specialized protocol designs in such a way that it communicate among buses, bus stands and central stand. It helps in bus failure detection system which improves transport management.

Keywords: Bus Stand Module (BSM), Central Stand Module (CSM), Global Position System (GPS), Bus arrival Prediction Technology.

1. INTRODUCTION

Developing countries transport systems desperately lacking the necessary financial resources for investment in infrastructure, vehicles and new technologies [1]. There are several studies and researches in this field. Most of the existing system use advances communication system in technologies like wireless communication, Global Positioning System (GPS). Automatic Vehicle Location (AVL) systems and Automatic Passenger Counters (APC) based on global positioning systems (GPS) have been adopted by many transit systems to monitor the movements of buses on real time basis. The geographic information system (GIS) or GPS tools used in a transit system for monitoring the movement of buses can also be used to create a digital route map [2-5]. Most of the GPS based intelligent public transport system not feasible in developing countries due to high cost GPS system. In 2009, a RFID based system purposed for Bus Management System. This system can monitor bus traffic inside spacious bus stations, and can inform administrators whether the bus is arriving on time, early or late. This information is then displayed on the different wireless displays inside and outside the bus station [6]. In 2011, a GSM based system purposed, in which GSM Machine fitted on buses, is used to transmit a 32-bit binary code, which is received by the receiver which encodes it. People density value and other data, is collectively transmitted to the computer connected to server via SMS system [7]. This system is expensive due to using GSM machine on all buses and SMS service used for data transmission.

2. SYSTEM ARCHITECTURE

In the research, develop a cost-effective model to predict the bus arrival time at stops using historical and analytical bus travel time information which receives from all bus stands. For fulfilling this aim, implemented a wireless communication network, based on low cost and low range RF receiver and transmitter module.

2.1. Software Implementation

The main contribution in this paper is to design the communication protocol and software which helps to communicate among all BAPT modules. The objective of this software is to interface between stand to bus, bus to bus, stand to stand, stand to GPRS device and display.

2.1.1. Protocol implementation

In proposed system, one dynamic communication protocol implemented as shown in Figure 1. This protocol is able to communicate all BAPT modules which is based on type of communication, to make the system more reliable.
According to type of communication and command field, system will respond. Protocol field descriptions are following:

- **SF (Start Flag):** It is used in all data packet at the beginning, to indicate the start of some data to be sent. Based on communication between different modules, the start of frame can be of either type with unique address for bus, bus stand or central bus stand.

- **Source/Destination Address:** Based on the communication the source/address can either be a bus or stand. There will be specific addresses fixed for bus and the stand. This is necessary for the packets to reach the exact address, and the destination should know from whom it’s receiving the data packet.

- **Command Field:** The command in the data packet of BAPT determines the type of information being sent to either stand or bus. The command information being sent from source to destination can be of types Table 1:

<table>
<thead>
<tr>
<th>Command Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement(ACK)</td>
<td>0 × 30</td>
</tr>
<tr>
<td>NACK/ARQ Auto Resend request</td>
<td>0 × 31</td>
</tr>
<tr>
<td>Sync Command</td>
<td>0 × 32</td>
</tr>
<tr>
<td>Bus Info Command</td>
<td>0 × 33</td>
</tr>
<tr>
<td>Bus Failure Command</td>
<td>0 × 34</td>
</tr>
</tbody>
</table>

- **Bytes Field and Check Sum Field:** Byte 1, byte 2 and byte 3, which can be used if necessary in future enhancement of BAPT.

- **EF (End of Frame):** This frame is used in the data packet of BAPT to indicate the end of information being sent from any source and destination. If the EF frame is not received by the destination within the specified time then the data packet will be sent again by the source.

2.1.2. Packet Information: In the System Following Messages are Using for Communication

(i) **Info Message**

(a) *Bus to Bus:* Contains failed Bus-ID and problem ID

(b) *Bus to Stand:* Contains polling stand ID, failed Bus-ID and problem ID

(c) *Stand to Stand:* Contains Destination stand ID, failed Bus-ID, Near Stand ID and problem ID

(ii) **Fail Message**

(a) *Bus to Bus:* Contains failed Bus-ID and problem ID

(b) *Bus to Stand:* Contains polling stand ID, failed Bus-ID and problem ID

(c) *Stand to Stand:* Contains Destination stand ID, failed Bus-ID, Near Stand ID and problem ID

(iii) **Maintenance/service message**

(a) *Stand to Stand:* Contains new time predicted estimation value

(b) *Bus to Stand:* Add/remove any Bus/Stand ID

2.2. Hardware Implementation

The systems have three major parts: Bus module, Bus Stand Module and Central station module. All modules contain one 89V51RD2 microcontroller. Bus module have switches panel with specific problem ID, low cost 433.92/315 MHz RF transmitter and receiver with 318 series of encoders and decoders, tactical sensors switches for count number of seated persons in a bus. In the bus stand module, SIM300 GPRS module use for stand to stand communication, LCD for display, 433.92/315 MHz RF transmitter and receiver with 318 series of encoders. In Central Bus station, apart from bus station requirements, only RTC, EEPROM and server connectivity RS232 are used.

2.2.1. Bus Module

This module is mounted at each bus of the transportation system with unique ID. Bus driver is provided with switch panel, if any predefined problem (like tyre puncture, fuel empty and engine failure etc) occurs in the bus then driver can press the corresponding switch for help. In the failure case, failure bus blinks alert signal and it starts broadcasting the id and problem for help, once any bus who has same module, comes near its range it will receive the fail message and provide acknowledge message immediately. After receiving the acknowledge message the fail bus will stop blinking alert signal and move to the non-working state. Now passing bus will store the fail message in its memory and when any bus stand polls for buses, bus will send it is own information and fail message also. Bus will wait for acknowledge from the stand if acknowledge comes it will delete the message from the memory else during next polling cycle it will send.

2.2.2. Bus Stand Module

Bus Stand Module consists of two parts: Main Stand Module (MSM) and Bus Communication Controller (BCC). MSM is main module which controls all the communications in the network. It has direct interface with buses, adjacent bus stands and users.
Design and Implementation of Adaptive Public Transport System with Low Cost Wireless Link...

3. OPERATION OF SYSTEM

In the system, bus arrival time estimation using traffic density modelling in CCM server, which can estimated times from one stop to next stop are automatically updated using wireless communication in all the bus stands as shown in Figure 3.

![Figure 3: Bus Arrival Prediction Technology](image)

All bus stands are connected to each other using GPRS wireless communication network and all data including number of passengers information for bus arrival at particular stop will finally stored in central station for future statistical analysis like change of route to avoid traffic congestions, adding of buses if arrival frequency is too low, deletion of route if it is very slow moving route. Based on this statistical data, central bus stand unit can take decision on certain time line basis. Information of seats vacant, filling, and getting emptied will be send to central station and based on this data transport management can take an action and buses will be order from bus depot if buses are running full or extra buses can be remove from route if buses running empty.

3.1. Bus Arrival Prediction System

When BCC gets the information of the Bus arrival and after updating bus status in their memory, MSM propagate the bus information from current stop to next stand MSM and this will go on and finally the bus info will reach to central station’s CSM where it will be stored in server database. As seen example of the system in table 3, bus takes 50 minutes to travel from stand1 to stand 2 and so on. If packet is reaching Stand 6, contains the information that Bus1 is at stand2 then Stand6 will add up all times from its location to bus stoppage location. Let suppose 40 + 70 + 60 + 80 = 250 minutes, and it will display the Bus1 is four stops away and arriving in 250 mins (4hour 10mins). This lookup table is prefixed and stored prior to the installation or at first boot up time. This traffic density model is a statistical model which will be based on bus information data stored and process at central station.

2.2.3. Central Station Module

This module is placed at central station where most of the buses start and end. And here all the messages from the various routes, various stands, and buses are collected and stored in the server, this server will run special software which will do statsis analysis to find out the traffic pattern and will update bus stands accordingly. For this task, it is equipped with RF interface to receive messages from stands, and RTC to keep track of time, max232 to interface to RS232 port of the server and microcontroller for reading incoming packets from the stands and then process it.

![Figure 2: Bus Stand Module Flow Diagram](image)
Table 2

<table>
<thead>
<tr>
<th>Stand-Stand</th>
<th>Mean Travel Time in minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>51-52</td>
<td>50</td>
</tr>
<tr>
<td>52-53</td>
<td>80</td>
</tr>
<tr>
<td>53-54</td>
<td>60</td>
</tr>
<tr>
<td>54-55</td>
<td>70</td>
</tr>
<tr>
<td>55-56</td>
<td>40</td>
</tr>
<tr>
<td>56-57</td>
<td>100</td>
</tr>
<tr>
<td>57-58</td>
<td>90</td>
</tr>
</tbody>
</table>

3.2. Bus Failure Detection System

If bus fails in some route that time driver will have provision to intimate to next bus stop with failure reason. Failure bus will broadcast a help/information packet with failure information and any ongoing bus will listen it and convey to next bus stop for avoiding delay in help and alert for passengers. Whenever bus will fail with some reason then bus driver will press specific reason button and fault message packet with specific reason ID will broadcast. Any ongoing bus which will having same Tx & Rx module, will receive fault message packet and this bus will update it to next bus stop with faulty reason, bus number and bus stop ID where last time it detected. Bus stand will connect to display of predicted bus arrival time for user notification.

3.3. Display Management

After Bus stand get information from Bus about its ID and seats it declares to the users via display that respective bus has arrived and vacant seats info is provided. And bus stand also passes this bus information to next bus stand which on receiving this info inform users that bus is one stop away and coming is some x minutes which is predefined. Now this bus stand send info of same bus to next bus stand on getting this info the bus stand displays bus is two stop away and coming in x2 minutes in both the bus stand timers are there and countdown goes on which keeps in decrementing arrival times once it reaches zero in first stop bus status is changed to arriving soon instead of coming in x minutes.

4. SYSTEM EVALUATION AND RESULTS

The designed system is first verified via sending communication protocol packets among all modules. All modules received messages successfully within time line. Bus stand to adjacent bus stand communication verification done with AT command request and response in GPRS module at both the end. In the test bench (shown in Figure 4) performed the first testing and verification procedure. Bus failure detection system, bus cancelled, delayed, arrival soon, bus number and seat vacant in arrival bus information displayed successfully according to current scenarios. Bus failure detected and informed via passing bus to near bus station also successful.

![Figure 4: System Test Bench](image)

5. CONCLUSION

In this project, the result of the designed system with log cost RF link and specialized protocol, has accomplished the target. The proposed system provides the fleet an ability to take decisions according to real-time information, in addition to historical data. It ensures that the tracking process is within an accurate and acceptable range, failure bus detection happened with failure reason.

REFERENCES

4. Wei-Hua Lin and Jian Zeng, “A Experimental Study on Real Time Bus Arrival Time Prediction With GPS Data”, Center for Transportation Research and Department of Civil.