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Abstract: This paper presents a Big Bang Big Crunch concept based search algorithm for automatic generation 
of structural software tests. Test cases are symbolically generated by measuring fitness of individuals with the 
help of branch distance based objective function. Evaluation of the test generator was performed using ten real 
world programs. Some of these programs had large ranges for input variables. Results show that the new 
technique is a reasonable alternative for test data generation, but doesn’t perform very well for large inputs and 
where constraints are having many equality constraints.  
Keywords: Big Bang Big Crunch, Symbolic Execution, Software Testing. 

 
 

1. Introduction  
Highly non-linear structure of software presents a formidable task to search algorithms for finding optimal and 
efficient test data from a complex, discontinuous, non-linear inputs’ search space. For such environment, the 
search algorithm must have both types of search capabilities; local as well as global. Most successful search 
algorithm class is based on metaheuristic techniques such as genetic algorithm (GA), simulated annealing (SA), 
tabu search, ant colony optimization (ACO), particle swarm optimization (PSO) etc. Xanthakis [4] first time 
applied GA for automatic test case generation. Pargas et al [6] proposed a GA based testing technique where 
number of executed control dependent nodes of the target node decides the fitness of solutions population. 
Wagener et al [1] logarithmized objective function to provide better guidance for its GA based test data 
generator. Watkins [7] and Ropar [10] used coverage based criteria for assessing the fitness of individuals in 
their GA based test generator. Lin and Yeh [13] used hamming distance based metric in objective function of 
their GA program to identify the similarity and distance between actual path and the already selected target path 
for traversal in dynamic testing. Michal et al [9] have used GA based testing method for covering all the 
conditions on a path for c and c++ programs. 
Tracey [12] constructed a SA based test data generator for safety critical system by using a hybrid objective 
function, which includes both concept; branch distance and number of executed control-dependent-nodes. Diaz 
et al [5] developed a tabu search based test data generator, which maintains a search list also called as tabu list. 
It uses neighbourhood information and backtracking for solving local optima. Ayari et al [11] proposed an 
evolutionary approach based on ACO to reduce the cost of test data generation in the context of mutation 
testing. This ACO based approach is enhanced by a probability density estimation technique in order to provide 
better guidance to the search for continuous input parameters. Windisch et al [2] have reported the application 
of particle swarm optimization technique for test data generation for dynamic testing.  
Another recent search algorithm in soft computing category is Big Bang Big Crunch (BBBC) algorithm, which 
simulates the energy stabilization in the universe. Although this technique has been successfully employed on 
scores of engineering applications such as mechanical engineering and civil engineering, but its applicability in 
testing domain is still unexplored.  

 
2. Methodology 
2.1 Software testing as Search problem  
 For software testing purpose, as solution lies in searching inputs, every possible set of inputs represent 
the global population in search algorithm and selected inputs from this global set are represented by individuals 
in the population. We have chosen the all-path coverage criterion for our experimentation. It involves generation 
of test data for a target feasible path in such a way that on executing program, it covers all branches on that path 
by satisfying all the condition(s) at branch nodes of a particular path. Consequently, the problem of path testing 
can be formulated simply as constraint satisfaction problem. Figure 1 shows the mechanism of symbolic path 
test data generator. 
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Fig 1. Automatic Symbolic Path Test Data Generator  

2.2 Search Algorithm 
 The Big Bang and Big Crunch theory is introduced by Erol and Eksin [8], which is based upon the analogy of 

universe evolution where two phase of evolution is represented by expansion (Big Bang) & contraction (Big 
crunch). This algorithm has a low computational time and high convergence speed. In fact, the Big Bang phase 
dissipates energy and produces disorder and randomness. In the Big Crunch phase, randomly distributed 
particles (which form the solution when represented in a problem) are arranged into an order by way of a 
convergence operator “center of mass”. The Big Bang–Big Crunch phases are followed alternatively until 
randomness within the search space during the Big Bang becomes smaller and smaller and finally leading to a 
solution. Below is given the algorithm for the BBBC algorithm in steps. 

 
 

1. Create random population of solution. 
2. Evaluate Solutions. 
3. The fittest individual can be selected as the center of mass. 
4. Calculate new candidates around the center of mass by adding or subtracting a normal 

random number whose value decreases as the iterations elapse. 
5. The algorithm continues until predefined stopping criteria has been met 

Fig 2. BBBC Search Algorithm Workflow 
 

2.3 Fitness Function 
For path testing criterion, in order to traverse a feasible path, the control must satisfy the entire branch 
predicates, which falls on that particular path. In our experimentations, we have used symbolic execution 
technique of static structural testing. So, corresponding to each path a compound predicate (CP) is made by 
‘anding’ each branch predicate of the path. The CP must be evaluated to true by a candidate solution in turn to 
become a valid test case. The BBBC generates population of candidate solutions and these are used to evaluate 
CP. If predicate is not evaluated to true by an individual then all the constraints of particular path are split into 
distinct predicate (DP) and one by one each DP is evaluated by taking values of its operands from candidate 
solution. A DP is that one, which contains only one operator (a constraint with modulus operator is exception) 
and can be expressed in form of expression  where   and are LHS and RHS of expression made of 
one or more operand(s) and is relational operator. If DP is satisfied then no penalty is imposed to candidate 
solution, otherwise candidate solution is penalized on the basis of branch distance concept rules as shown in 
table 1 which is also recommended by Watkins et al [3] for static structural testing.  

Table1. Branch Predicate based Fitness function 

 
After this integrated fitness due to whole of CP is determined by adding penalty values of two DPs, if they are 
connected by a conditional ‘and’ operator. If two DPs are connected by a conditional ‘or’ operator then 
minimum penalties of two DPs is considered for the evaluation of whole CP fitness. If integrated fitness is zero 

Violated 
predicate  

Penalty to be imposed in case 
predicate is not satisfied 

Violated 
predicate 

Penalty to be imposed in case 
predicate is not satisfied 

A < B  A – B+ � A �  B B – A  

A � B A – B  A = B Abs(A – B) 
A > B  B – A+ � A � B � – abs(A – B) 
� is a smallest constant of operands’ universal domains.  
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then CP is called evaluated or satisfied by the individual whose values are replaced in CP and search process for 
particular path is terminated otherwise search is allowed to proceed further. 
  
3. Experimental Setup and Results 
The BBBC algorithm is implemented using MATLAB programming environment. The performance of the 
algorithms is measured using average test cases generated per path (ATCPP) and average percentage coverage 
(APC) metrics. Experiment is conducted 10 times for averaging results. In each attempt, BBBC is iterated for 
100 generations for each of 10 runs. In each run, except for the first run, first-generation population is seeded 
with the best solution from the previous run. This is done to check premature convergence of population. Total 
number of real encoded individuals in each population is 30. If a solution is not found within all runs that 
generates total 30,000 invalid test cases then it is declared that the test case generation has failed for that 
particular attempt. This value has been obtained by multiplying total number of runs, generations and number of 
individual in each population. An invalid test case is a solution, which does not qualify to become a test case. 
For comparing the BBBC method with random test generator, we have chosen two small but frequently used 
real world programs for test data generation activity. First program or test object is Triangle classifier (TC) 
which accepts three inputs as sides of a triangle and then decides whether these sides form a triangle and if yes 
then of what type. This program is of 35 lines and its cyclomatic complexity is 7 with nesting level 5. Second 
test object is called as line-rectangle classifier (LRC) program identifies whether a line cuts a rectangle or lies 
completely outside or lies completely inside of the rectangle. In this program total eight inputs are entered; four 
for co-ordinates of rectangle and other four inputs to define the line. Some of the nodes in CFG of this program 
have very high level of nesting of as high as 12 with overall cyclomatic complexity of 19.  
Table 2 presents the comparison between random test data generator and BBBC based test data generator. The 
BBBC is able to generate test cases for all paths except in cases of large domain. This shows the inapplicability 
of BBBC for large domains of inputs. It also fails to generate test data for TC (small domain) for a path in which 
it has to prove triangle as equilateral. So, we can also conclude that search algorithm performance is affected by 
the number of equality constraints the target path involving.  

 
Table 2. ATCPP and APC for Test Objects 

Random Tester BBBC Tester Name of Program 
ATCPP APC ATCPP APC 

TC (small Domain) 10493 47.86% 829 100% 
TC (Large Domain) 17147 42.85% 7564 83.32% 

LRC (small Domain) 13901 55% 2543 97.23% 
LRC (Large Domain) 14159 53 11765 74.42% 

 
Further to prove the applicability and scalability of BBBC tester, we have chosen 8 real world programs for test 
data generation activity. These are called test objects here and brief explanation for each test object is given 
below.  

 
Table 3. Test Objects’ characteristics and corresponding test coverage result  

Table 3 presents the results of testing effort on 8 testing objects selected for experimentation in last two 
columns. Test cases for TC and LRC programs are generated from inputs by taking small as well as large 
domain of size 104 and 108 respectively for each path. The BBBC is able to generate test cases for all paths 

Name of 
Program 

Lines 
Code 

Cyclomatic 
Complexity 

Decision 
Nodes 

Nesting 
Level 

Total Paths 
in CFG 

Feasible 
Paths 

ATCPP APC 

DBTD 123 26 22 05 1643 566 378 100 

A2F 48 15 14 07 910 568 5743 100 

BS 23 05 04 03 124 62 28021 48 

REM 35 10 8 04 22 22 1652 100 

BUB 21 04 03 03 121 31 413 100 

QUAD 24 06 05 03 06 06 2247 100 

MINMAX 27 04 03 03 121 121 721 100 

ISPRIME 16 03 02 02 10 08 47 100 
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except in cases of TC (small as well as large domain), LRC (large domain) and BS program. This shows the 
inapplicability of BBBC for large domains of inputs. It also fails to generate test data for TC (small domain) 
frequently for a path in which it has to prove triangle as equilateral. Thereby, we can also conclude that search 
algorithm performance is affected by the number of equality constraints the target path involving. Other than 
these, the binary search is the only program for which BBBC fails to generate test cases. This may be due to 
requirement of inputting variable array to satisfy the boundary cases. Although we have taken a fixed size array 
of size 80 but its size is varied by taking an external variable ‘n’ during experimentation. We have used the same 
approach for A2F and BUB programs but in these, boundary cases are not required to be satisfied. 
 
4. Conclusion  
We have proposed a new search algorithm for the generation of test cases. Experimentations are done on two 
real world problems. Static testing based symbolic execution method has been used in which first, target path is 
selected from CFG of program and then inputs are generated using the BBBC method to satisfy composite 
predicate corresponding to the path. It has been observed that the BBBC method is better alternative than 
random testing.  
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