
International Journal of Computer Science and Communication Vol. 3, No. 1, January-June
2012, pp. 259-262

 259

Application of Big Bang Big Crunch Algorithm
to Software Testing

Surender Singh[1], Parvin Kumar[2]
[1]CMJ University, Shillong, Meghalya, (INDIA)

[2]Meerut Institute of Science & Technology, Meerut, UP (INDIA)
surendahiya@gmail.com, pk223475@yahoo.com

Abstract: This paper presents a Big Bang Big Crunch concept based search algorithm for automatic generation
of structural software tests. Test cases are symbolically generated by measuring fitness of individuals with the
help of branch distance based objective function. Evaluation of the test generator was performed using ten real
world programs. Some of these programs had large ranges for input variables. Results show that the new
technique is a reasonable alternative for test data generation, but doesn’t perform very well for large inputs and
where constraints are having many equality constraints.
Keywords: Big Bang Big Crunch, Symbolic Execution, Software Testing.

1. Introduction
Highly non-linear structure of software presents a formidable task to search algorithms for finding optimal and
efficient test data from a complex, discontinuous, non-linear inputs’ search space. For such environment, the
search algorithm must have both types of search capabilities; local as well as global. Most successful search
algorithm class is based on metaheuristic techniques such as genetic algorithm (GA), simulated annealing (SA),
tabu search, ant colony optimization (ACO), particle swarm optimization (PSO) etc. Xanthakis [4] first time
applied GA for automatic test case generation. Pargas et al [6] proposed a GA based testing technique where
number of executed control dependent nodes of the target node decides the fitness of solutions population.
Wagener et al [1] logarithmized objective function to provide better guidance for its GA based test data
generator. Watkins [7] and Ropar [10] used coverage based criteria for assessing the fitness of individuals in
their GA based test generator. Lin and Yeh [13] used hamming distance based metric in objective function of
their GA program to identify the similarity and distance between actual path and the already selected target path
for traversal in dynamic testing. Michal et al [9] have used GA based testing method for covering all the
conditions on a path for c and c++ programs.
Tracey [12] constructed a SA based test data generator for safety critical system by using a hybrid objective
function, which includes both concept; branch distance and number of executed control-dependent-nodes. Diaz
et al [5] developed a tabu search based test data generator, which maintains a search list also called as tabu list.
It uses neighbourhood information and backtracking for solving local optima. Ayari et al [11] proposed an
evolutionary approach based on ACO to reduce the cost of test data generation in the context of mutation
testing. This ACO based approach is enhanced by a probability density estimation technique in order to provide
better guidance to the search for continuous input parameters. Windisch et al [2] have reported the application
of particle swarm optimization technique for test data generation for dynamic testing.
Another recent search algorithm in soft computing category is Big Bang Big Crunch (BBBC) algorithm, which
simulates the energy stabilization in the universe. Although this technique has been successfully employed on
scores of engineering applications such as mechanical engineering and civil engineering, but its applicability in
testing domain is still unexplored.

2. Methodology
2.1 Software testing as Search problem
 For software testing purpose, as solution lies in searching inputs, every possible set of inputs represent
the global population in search algorithm and selected inputs from this global set are represented by individuals
in the population. We have chosen the all-path coverage criterion for our experimentation. It involves generation
of test data for a target feasible path in such a way that on executing program, it covers all branches on that path
by satisfying all the condition(s) at branch nodes of a particular path. Consequently, the problem of path testing
can be formulated simply as constraint satisfaction problem. Figure 1 shows the mechanism of symbolic path
test data generator.

International Journal of Computer Science and Communication Vol. 3, No. 1, January-June
2012, pp. 259-262

 260

Fig 1. Automatic Symbolic Path Test Data Generator

2.2 Search Algorithm
 The Big Bang and Big Crunch theory is introduced by Erol and Eksin [8], which is based upon the analogy of

universe evolution where two phase of evolution is represented by expansion (Big Bang) & contraction (Big
crunch). This algorithm has a low computational time and high convergence speed. In fact, the Big Bang phase
dissipates energy and produces disorder and randomness. In the Big Crunch phase, randomly distributed
particles (which form the solution when represented in a problem) are arranged into an order by way of a
convergence operator “center of mass”. The Big Bang–Big Crunch phases are followed alternatively until
randomness within the search space during the Big Bang becomes smaller and smaller and finally leading to a
solution. Below is given the algorithm for the BBBC algorithm in steps.

1. Create random population of solution.
2. Evaluate Solutions.
3. The fittest individual can be selected as the center of mass.
4. Calculate new candidates around the center of mass by adding or subtracting a normal

random number whose value decreases as the iterations elapse.
5. The algorithm continues until predefined stopping criteria has been met

Fig 2. BBBC Search Algorithm Workflow

2.3 Fitness Function
For path testing criterion, in order to traverse a feasible path, the control must satisfy the entire branch
predicates, which falls on that particular path. In our experimentations, we have used symbolic execution
technique of static structural testing. So, corresponding to each path a compound predicate (CP) is made by
‘anding’ each branch predicate of the path. The CP must be evaluated to true by a candidate solution in turn to
become a valid test case. The BBBC generates population of candidate solutions and these are used to evaluate
CP. If predicate is not evaluated to true by an individual then all the constraints of particular path are split into
distinct predicate (DP) and one by one each DP is evaluated by taking values of its operands from candidate
solution. A DP is that one, which contains only one operator (a constraint with modulus operator is exception)
and can be expressed in form of expression where and are LHS and RHS of expression made of
one or more operand(s) and is relational operator. If DP is satisfied then no penalty is imposed to candidate
solution, otherwise candidate solution is penalized on the basis of branch distance concept rules as shown in
table 1 which is also recommended by Watkins et al [3] for static structural testing.

Table1. Branch Predicate based Fitness function

After this integrated fitness due to whole of CP is determined by adding penalty values of two DPs, if they are
connected by a conditional ‘and’ operator. If two DPs are connected by a conditional ‘or’ operator then
minimum penalties of two DPs is considered for the evaluation of whole CP fitness. If integrated fitness is zero

Violated
predicate

Penalty to be imposed in case
predicate is not satisfied

Violated
predicate

Penalty to be imposed in case
predicate is not satisfied

A < B A – B+ � A � B B – A

A � B A – B A = B Abs(A – B)
A > B B – A+ � A � B � – abs(A – B)
� is a smallest constant of operands’ universal domains.

International Journal of Computer Science and Communication Vol. 3, No. 1, January-June
2012, pp. 259-262

 261

then CP is called evaluated or satisfied by the individual whose values are replaced in CP and search process for
particular path is terminated otherwise search is allowed to proceed further.

3. Experimental Setup and Results
The BBBC algorithm is implemented using MATLAB programming environment. The performance of the
algorithms is measured using average test cases generated per path (ATCPP) and average percentage coverage
(APC) metrics. Experiment is conducted 10 times for averaging results. In each attempt, BBBC is iterated for
100 generations for each of 10 runs. In each run, except for the first run, first-generation population is seeded
with the best solution from the previous run. This is done to check premature convergence of population. Total
number of real encoded individuals in each population is 30. If a solution is not found within all runs that
generates total 30,000 invalid test cases then it is declared that the test case generation has failed for that
particular attempt. This value has been obtained by multiplying total number of runs, generations and number of
individual in each population. An invalid test case is a solution, which does not qualify to become a test case.
For comparing the BBBC method with random test generator, we have chosen two small but frequently used
real world programs for test data generation activity. First program or test object is Triangle classifier (TC)
which accepts three inputs as sides of a triangle and then decides whether these sides form a triangle and if yes
then of what type. This program is of 35 lines and its cyclomatic complexity is 7 with nesting level 5. Second
test object is called as line-rectangle classifier (LRC) program identifies whether a line cuts a rectangle or lies
completely outside or lies completely inside of the rectangle. In this program total eight inputs are entered; four
for co-ordinates of rectangle and other four inputs to define the line. Some of the nodes in CFG of this program
have very high level of nesting of as high as 12 with overall cyclomatic complexity of 19.
Table 2 presents the comparison between random test data generator and BBBC based test data generator. The
BBBC is able to generate test cases for all paths except in cases of large domain. This shows the inapplicability
of BBBC for large domains of inputs. It also fails to generate test data for TC (small domain) for a path in which
it has to prove triangle as equilateral. So, we can also conclude that search algorithm performance is affected by
the number of equality constraints the target path involving.

Table 2. ATCPP and APC for Test Objects

Random Tester BBBC Tester Name of Program
ATCPP APC ATCPP APC

TC (small Domain) 10493 47.86% 829 100%
TC (Large Domain) 17147 42.85% 7564 83.32%

LRC (small Domain) 13901 55% 2543 97.23%
LRC (Large Domain) 14159 53 11765 74.42%

Further to prove the applicability and scalability of BBBC tester, we have chosen 8 real world programs for test
data generation activity. These are called test objects here and brief explanation for each test object is given
below.

Table 3. Test Objects’ characteristics and corresponding test coverage result

Table 3 presents the results of testing effort on 8 testing objects selected for experimentation in last two
columns. Test cases for TC and LRC programs are generated from inputs by taking small as well as large
domain of size 104 and 108 respectively for each path. The BBBC is able to generate test cases for all paths

Name of
Program

Lines
Code

Cyclomatic
Complexity

Decision
Nodes

Nesting
Level

Total Paths
in CFG

Feasible
Paths

ATCPP APC

DBTD 123 26 22 05 1643 566 378 100

A2F 48 15 14 07 910 568 5743 100

BS 23 05 04 03 124 62 28021 48

REM 35 10 8 04 22 22 1652 100

BUB 21 04 03 03 121 31 413 100

QUAD 24 06 05 03 06 06 2247 100

MINMAX 27 04 03 03 121 121 721 100

ISPRIME 16 03 02 02 10 08 47 100

International Journal of Computer Science and Communication Vol. 3, No. 1, January-June
2012, pp. 259-262

 262

except in cases of TC (small as well as large domain), LRC (large domain) and BS program. This shows the
inapplicability of BBBC for large domains of inputs. It also fails to generate test data for TC (small domain)
frequently for a path in which it has to prove triangle as equilateral. Thereby, we can also conclude that search
algorithm performance is affected by the number of equality constraints the target path involving. Other than
these, the binary search is the only program for which BBBC fails to generate test cases. This may be due to
requirement of inputting variable array to satisfy the boundary cases. Although we have taken a fixed size array
of size 80 but its size is varied by taking an external variable ‘n’ during experimentation. We have used the same
approach for A2F and BUB programs but in these, boundary cases are not required to be satisfied.

4. Conclusion
We have proposed a new search algorithm for the generation of test cases. Experimentations are done on two
real world problems. Static testing based symbolic execution method has been used in which first, target path is
selected from CFG of program and then inputs are generated using the BBBC method to satisfy composite
predicate corresponding to the path. It has been observed that the BBBC method is better alternative than
random testing.

References

[1] J. Wegener, A. Baresel and H. Sthamer, “Evolutionary test environment for automatic structural testing,”
Information and Software Technology, 2001; Vol. 43, pp. 841–54.

[2] A. Windisch, S. Wappler and J. Wegener, “Applying particle swarm optimization to software testing,”
Proc. conference on Genetic and evolutionary computation GECCO’07, London, England, United
Kingdom, July 2007, pp. 7–11.

[3] T. Schmickl, R. Thenius and K. Crailsheim “Simulating swarm intelligence in honey bees: foraging in
differently fluctuating environments,” GECCO'05, Washington, DC, USA, 2005, pp. 273-274.

[4] S. Xanthakis, C. Ellis, C. Skourlas, A. Gall, S. Katsikas and K. Karapoulios, “Application of genetic
algorithms to software testing,” In The fifth international conference on software engineering 1992; pp.
625–36.

[5] E. Díaz,T. Javier, B. Raquel and J. Jose, “A tabu search algorithm for structural software testing,”
Computers and Operations Research (2007), doi:10.1016/j.cor. 2007.01.009

[6] R. Pargas, M. Harrold and R. Peck, “Test-data generation using genetic algorithms,” Journal of Software
Testing, Verification and Reliability 1999; 9(4): pp. 263–82.

[7] A. Watkins, “The automatic generation of test data using genetic algorithms,” In The fourth software
quality conference 1995; 2: pp. 300–309.

[8] Erol OK and, Eksin I, A new optimization method: Big Bang-Big Crunch, Advances in Engineering
Software, 37, 2006, 106-111.

[9] C. Michael, G. McGraw and M. Schatz, “Generating software test data by evolution,” IEEE Transactions
on Software Engineering 2001; 27(12): pp. 1085–1110.

[10] M. Roper, “Computer aided software testing using genetic algorithms,” In 10th International Software
Quality Week, San Francisco, USA, 1997.

[11] K. Ayari, S. Bouktif and G. Antoniol, “Automatic mutation test input data generation via ant colony,”
GECCO’07, July 7–11, 2007, London, England, United Kingdom.

[12] N. Tracey, A Search-Based Automated Test-Data Generation Framework for Safety Critical Software,
PhD thesis, University of York, 2000.

[13] J. Lin and P. Yeh, “Automatic test data generation for path testing using Gas” Information Sciences 2001;
131: pp. 47–64.

