
International Journal of Computer Science and Communication Vol. 2, No. 2, July-December 2011, pp. 649-652

ABSTRACT

TO GENERATE RULE FOR SOFTWARE DEFECT PREDICTION ON QUANTITATIVE AND
QUALITATIVE FACTORS USING ARTIFICIAL NEURAL NETWORK

Harish Kundra*, Neha Gautam1, Sunil Khullar2 and Parvinder. S. Sandhu3

1Student, Department of Computer Science, Rayat Institute of Engineering & Information Technology
2Senior Lecturer, Department of Computer Science, Rayat Institute of Engineering & Information Technology
E-mail: sunilkhullar222@yahoo.co.in
3Professor, Department of Computer Science & Engg., Rayat & Bahra Institute of Engineering &
Biotechnology, Mohali, India

Fault-proneness of a software module is the probability that the module contains faults. A correlation exists between
the fault-proneness of the software and the measurable attributes of the code (i.e. the static metrics) and of the testing
(i.e. the dynamic metrics). Static code metrics such as Halstead complexity, Cyclomatic complexity, McCabe’s
complexity measure are inefficient to measure quality, The use of single features of software to predict faults is
uninformative. Therefore Artifical Neural Network is used for software defect prediction. An Artificial Neural Network
(ANN) is an information-processing paradigm that is inspired by the way a biological nervous system in human
brain works. Large number of neurons present in the human brain forms the key element of the neural network
paradigm and act as elementary processing elements. These neurons are highly interconnected and work in unison to
solve complex problems. Likewise, an Artificial Neural Network can be configured to solve a number of difficult and
complex problems. Neural Network Approaches such as Multilayer Perceptron & RBF are used for software Defect
prediction on Quantative and Qualatative factors.
Keyword: Radial Basis Function (RBF), Artifical Neural Network, Multilayer Perceptron, Cyclomatic Complexity,
Mc Cabe’s Complexity, Halstead Complexity.

* A.P. Department of Computer Science, Rayat Institute of
Engineering & Information Technology.

1. INTRODUCTION

Fault-proneness of a software module is the probability
that the module contains faults. A correlation exists
between the fault-proneness of the software and the
measurable attributes of the code (i.e. the static metrics)
and of the testing (i.e. the dynamic metrics). Early
detection of fault-prone software components enables
verification experts to concentrate their time and
resources on the problem areas of the software system
under development. Software quality models ensure the
reliability of the delivered products. It has become
important to develop and apply good software quality
models early in the software development life cycle,
especially for large-scale development efforts. Software
quality prediction models seek to predict quality factors
such as whether a component is fault prone or not. Faults
in software systems continue to be a major problem.
Many systems are delivered to users with excessive
faults. This is despite a huge amount of development
effort going into fault reduction in terms of quality
control and testing. Despite this it is difficult to identify
a reliable approach to identifying fault-prone software
components. So, it is made attempt to make use of
Multilayer Perceptron and RBF based Neural Network

approaches to identify the relation between the various
qualitative as well as quantitative factor of the modules
with the number of faults present in the module that will
be helpful for the prediction of faults.

1.1 Methodology

The methodology consists of the following steps:

I. Find the Qualitative and Quantitative Attributes
of Software Systems

First of all, find the structural code and design attributes
of software systems. Thereafter, select the suitable metric
values as representation of statement. The following are
the quantative metrics used:[1] Software size: the size, in
KLoC of the developed code and the development
language & Effortwhich is the development effort
measured in person hours for the software development,
from specification review to unit test. The Qualititative
factors are grouped under five topics [2] will be
Specification and Documentation process, New
Functionality, Design and Development process, Testing
and Rework & Project Management.

II. Select the Suitable Metric Values as
Representation of Statement

The suitable metrics like product requirement metrics and

mailto:sunilkhullar222@yahoo.co.in

International Journal of Computer Science and Communication (IJCSC)650

product module metrics out of these data sets are
considered.[3] The term product is used referring to
module level data. The term metrics data applies to any
finite numeric values, which describe measured qualities
and characteristics of a product. The term product refers
to anything to which defect data and metrics data can
be associated.

III. Analyze, Refine Metrics and Normalize the
Metric Values and Explore Different Neural
Network Techniques

It is very important to find the suitable algorithm for
modeling of software components into different levels
of fault severity in software systems.[10] The following
two Neural Network algorithms are experimented:

• Multilayer Perceptron
• RBF based Neural Network Approaches

IV. Comparison of Algorithms

The comparisons are made on the basis of the more
accuracy and least value of MAE and RMSE error values.
Accuracy value of the prediction model is the major
criteria used for comparison. The mean absolute error is
chosen as the standard error. The technique having lower
value of mean absolute error is chosen as the best fault
prediction technique.

 Mean Absolute Error

Mean absolute error, MAE is the average of the difference
between predicted and actual value in all test cases; it is
the average prediction error [13]. The formula for
calculating MAE is given in equation 1.

1 1 2 2– – –n na c a c a c
n

+ +…+
(1)

Assuming that the actual output is a, expected output
is c.

 Root Mean-squared Error

RMSE is frequently used measure of differences between
values predicted by a model or estimator and the values
actually observed from the thing being modeled or
estimated [22]. It is just the square root of the mean
square error as shown in equation 2.

2 2 2
1 1 2 2(–) (–) (–)n na c a c a c

n
+ +…+

(2)

The mean-squared error is one of the most
commonly used measures of success for numeric
prediction. This value is computed by taking the average
of the squared differences between each computed value
and its corresponding correct value. [17] The root mean-
squared error is simply the square root of the mean-

squared-error. The root mean-squared error gives the
error value the same dimensionality as the actual and
predicted values.[23]

The mean absolute error and root mean squared
error is calculated for each machine learning algorithm
i.e. various algorithms for Neural Networks.

2. RESULT

The proposed Neural based methodology is
implemented in WEKA environment is one such facility
which lends a high performance language for technical
computing.

The Classifier that uses backpropagation to classify
instances. This network is created by the algorithm. The
network can also be monitored and modified during
training time. The nodes in this network are all sigmoid
(except for when the class is numeric in which case the
output nodes become unthresholded linear units).

The following parameters are used for running the
multi perceptron based programme:

• hiddenLayers: This defines the hidden layers of the
neural network. This is a list of positive whole
numbers. 1 for each hidden layer. Comma
seperated. To have no hidden layers put a single 0
here. This will only be used if autobuild is set. There
are also wildcard values ‘a’ = (attribs + classes) / 2,
‘i’ = attribs, ‘o’ = classes , ‘t’ = attribs + classes. We
have set value equal to ‘a’.

• learningRate: The amount the weights are updated.
The value is set to 0.3.

• momentum: Momentum applied to the weights
during updating. The value is set to 0.2.

• nominalToBinaryFilter: This will preprocess the
instances with the filter. This could help improve
performance if there are nominal attributes in the
data. The value is set to true.

• normalizeAttributes: This will normalize the
attributes. This could help improve performance
of the network. This is not reliant on the class being
numeric. This will also normalize nominal
attributes as well (after they have been run through
the nominal to binary filter if that is in use) so that
the nominal values are between –1 and 1. The value
is set to true.

• normalizeNumericClass: This will normalize the class
if it’s numeric. This could help improve
performance of the network, It normalizes the class
to be between –1 and 1. Note that this is only
internally, the output will be scaled back to the
original range. The value is set to true.

• seed: Seed used to initialise the random number
generator. Random numbers are used for setting
the initial weights of the connections betweem

To Generate Rule for Software Defect Prediction on Quantitative and Qualitative Factors using Artificial Neural… 651

nodes, and also for shuffling the training data. The
value is set to 0.

• trainingTime: The number of epochs to train
through. If the validation set is non-zero then it can
terminate the network early. The value is set to 500.

• validationSetSize: The percentage size of the
validation set.(The training will continue until it is
observed that the error on the validation set has
been consistently getting worse, or if the training
time is reached). The value is set to 0. If This is set
to zero no validation set will be used and instead
the network will train for the specified number of
epochs.

• validationThreshold: Used to terminate validation
testing.The value here dictates how many times in
a row the validation set error can get worse before
training is terminated. The value is set to 20.

When Multi perceptron based neural network is
applied, the results obtained after 10-fold cross-
validation are:

• Mean absolute error 345.3643
• Root mean squared error 478.6951
In case of Radial basis function network,

RBFNetwork, (Linear regression applied to K-means
clusters as basis functions), the results obtained after 10-
fold cross-validation are:

• Mean absolute 395.4943
• Root mean squared error 529.0774
Class that implements a normalized Gaussian radial

basisbasis function network uses the k-means clustering
algorithm to provide the basis functions and learns either
a logistic regression (discrete class problems) or linear
regression (numeric class problems) on top of that.
Symmetric multivariate Gaussians are fit to the data from
each cluster. If the class is nominal it uses the given
number of clusters per class. It standardizes all numeric
attributes to zero mean and unit variance.

The following parameters are used (as shown in
figure 1):

• clusteringSeed: The random seed to pass on to
K-means. It is set to value ‘1’.

• maxIts: Maximum number of iterations for the
logistic regression to perform. Only applied to
discrete class problems. It is set to value ‘–1’.

• minStdDev: Sets the minimum standard deviation
for the clusters. It is set to value ‘0.1’.

• numClusters: The number of clusters for K-Means
to generate. It is set to value ‘2’ as we have only
two classes required.

• ridge: Set the Ridge value for the logistic or linear
regression. It is set to value ‘1.0 E -8’.

Figure 1: Snapshot of the Parameters used in the
RBF Network Programme

In the Linear Regression Model the total defects TD
can be calculated with help of following equation:

TD = 59.1858 * pCluster_0_0 +
–59.1874 * pCluster_0_1 + 429.0416

3. CONCULUSION AND FUTURE SCOPE

Prediction of Level of faults in modules supports
software quality engineering through improved
scheduling and project control. It is a key step towards
steering the software testing and improving the
effectiveness of the whole process. Fault prediction is
used to improve software process control and achieve
high software reliability.

In this study, we investigate whether qualitative and
quantitative factors can be used to identify level of
number of faulty software modules. We compare the
performance of Radial basis function network, where
Linear regression applied to K-means clusters as basis
functions and Multi Perceptron based neural network
for the fault dataset. Multi Perceptron based neural
network shows best results than RBF Network with
lower values of MAE and RMSE calculated as error
345.3643 and 478.6951 respectively. It is therefore,
concluded the Multi Perceptron based neural network
model is implemented and the best algorithm for
classification of the fault prone modules from the
faultless modules of the software systems.

The future work can be extended in following
directions:

• Most important attribute can be found for fault
prediction and this work can be extended to further
programming languages. More algorithms can be
evaluated and then we can find the best algorithm.

• Further investigation can be done and the impact
of attributes on the fault prediction can be found.

International Journal of Computer Science and Communication (IJCSC)652

• Other dimensions of quality of software can be
considered for mapping the relation of attributes
and fault tolerance.

REFRENCES
[1] Seliya N., Khoshgoftaar T.M. and Zhong S. (2005),

“Analyzing Software Quality with Limited Fault-
proneness Defect Data”, In Proceedings of the Ninth IEEE
international Symposium on High Assurance System
Engineering, Germany, pp. 89-98.

[2] Norman Fenton, Martin Neil, William Marsh, Peter
Hearty, Lukasz Radlinski, Paul Krause, “Project Data
Incorporating Qualitative Factors for Improved Software
Defect”, Proceedings of the PROMISE Workshop, Year: 2007.

[3] Jiang Y., Cukic B. and Menzies T. (2007), “Fault
Prediction using Early Lifecycle Data”, ISSRE 2007, the
18th IEEE Symposium on Software Reliability Engineering,
IEEE Computer Society, Sweden, pp. 237-246.

[4] Bezdek J.C., Ehrlich R., and Full W. (1984), “FCM: Fuzzy
c-means Algorithm”, Computers and Geoscience, 10, pp.
191-203.

[5] Khoshgoftaar T.M. and Munson J.C. (1990), “Predicting
Software Development Errors using Complexity Metrics”,
IEEE Journal on Selected Areas in Communications, 8, Issue: 2,
pp. 253 -261.

[6] Pigoski M. and Nelson E. (1994), “Software Maintenance
Metrics: A Case Study”, Proceedings of IEEE Conference
on Software Maintenance, Canada, pp. 392-401.

[7] Khoshgoftaar, T.M., Allen E.B., Ross F.D., Munikoti R.,
Goel N. and Nandi A. (1997), “Predicting Fault-prone
Modules with case-based Reasoning”, ISSRE 1997, the
Eighth International Symposium on Software Engineering,
Mexico, pp. 27-35.

[8] Menzies T., Ammar K., Nikora A., and Stefano S. (2003),
“How Simple is Software Defect Prediction?” Journal of
Empirical Software Engineering, 32, Issue: 2, pp.1156-1161.

[9] Eman K., Benlarbi S., Goel N., and Rai S. (2001),
“Comparing Case-based Reasoning Classifiers for
Predicting High Risk Software Components”, Journal of
Systems Software, 55, Issue: 3, pp. 301-310.

[10] Munson J.C. and Khoshgoftaar T.M. (1992), “The
Detection of Fault-prone Programs”, IEEE Transactions
on Software Engineering, 18, Issue: 5, pp. 423-433.

[11] Yaun X., Khoshgoftaar M. and Allen B. (2000), “An
Application of Fuzzy Clustering to Software Quality
Prediction”, Information Sciences: An International Journal,
179, Issue: 8, pp. 1040-1058.

[12] Seliya N. and Khoshgoftaar M. (2007), “Software Quality
Analysis of Unlabeled Program Modules with Semi
supervised Clustering”, Software Quality Journal, 37,
Issue: 2, pp. 201-211.

[13] Challagula, Bastani B. and Yen (2006), “A Unified
Framework for Defect Data Analysis using the MBR
Technique”, Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI’06),
Washington, pp. 39-46.

[14] Dav’e N. and Krishnapuram R. (1997), “Robust
Clustering Methods: A Unified View”, IEEE Transactions
on Fuzzy Systems, 5, Issue: 2, pp. 270-293.

[15] Saux B. and Boujemaa N. (2002), “Unsupervised Robust
Clustering for Image Database Categorization”, In
Proceedings of the IEEE-IAPR International Conference on
Pattern Recognition (ICPR’2002), Turkey, pp. 259-262.

[16] Stark E. (1996), “Measurements for Managing Software
Maintenance”, International Conference on Software
Maintenance, USA, pp. 152-161.

[17] Bellini P. (2005), “Comparing Fault-Proneness Estimation
Models”, 10th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS’05), China, pp.
205-214.

[18] Lanubile F., Lonigro A., and Visaggio G. (1995),
”Comparing Models for Identifying Fault-Prone Software
Components”, Proceedings of Seventh International
Conference on Software Engineering and Knowledge
Engineering, USA, pp. 12-19.

[19] Fenton N.E. and Neil M. (1999), “A Critique of Software
Defect Prediction Models”, IEEE Transactions on Software
Engineering, 25, Issue: 5, pp. 675-689.

[20] Runeson, Wohlin C. and Ohlsson M.C. (2001), “A
Proposal for Comparison of Models for Identification
of Fault-Proneness”, Journal of System and Software, 56,
Issue: 3, pp. 301–320.

[21] Deodhar M. (2002), “Prediction Model and the Size
Factor for Fault-proneness of Object Oriented Systems”,
Journal of System and Software, 56, Issue: 3, pp. 157-162.

[22] Ma Y. and Guo L. (2006), “A Statistical Framework for
the Prediction of Fault-Proneness”, Product Focused
Process Improvement, Edition: First, Publisher: Springer
Berlin/Heidelberg, pp. 204-214.

[23] Challagulla V.U.B., Bastani F.B., Yen I. L. and Paul (2005),
“Empirical Assessment of Machine Learning Based
Software Defect Prediction Techniques”, 10th IEEE
International Workshop on Object-Oriented Real-Time
Dependable Systems, USA, pp. 263-270.

