
International Journal of Computer Science and Communication Vol. 2, No. 2, July-December 2011, pp. 645-648

ABSTRACT

INVESTIGATE THE PERFORMANCE OF SOFTWARE DEFECT PREDICTION FOR DECISION
TREE ALGORITHM USING QUANTATIVE AND QUALATATIVE FACTORS

R. P. S. Bedi*, Priyanka Anand1, Sunil Khullar2 and Parvinder. S. Sandhu3

1Student, Department of Computer Science, Rayat Institute of Engineering & Information Technology
2Senior Lecturer, Department of Computer Science, Rayat Institute of Engineering & Information Technology
E-mail: sunilkhullar222@yahoo.co.in
3Professor, Department of Computer Science & Engg., Rayat & Bahra Institute of Engineering &
Biotechnology, Mohali, India.

Identifying and locating defects in software projects is a difficult work. Especially, when project size grow, this task
become expensive with sophisticated testing and evaluation with sophisticated testing and evaluation mechanism.
On the other hand, measuring software is a continuous and disciplined manner brings many advantage such as
accurate estimation of project cost and schedules and improving product and process qualities. Detailed analysis of
software metric data also gives significant clues about the location of possible defect in a programming code. The aim
of this paper is to establish a method for identifying software defect using decision tree algorithm. We investigate
whether qualitative and quantitative factors can be used to identify level of number of faulty software modules. We
compare the performance of Decision Stump based decision Tree, M5 Model and fast decision Tree learner known as
REPTree, for the fault dataset.
Keywords: Decision Stump, Decision Tree, Software Fault, M5 Model, REPTree.

* Joint Registrar PTU Jallandhar.

1. INTRODUCTION

Fault-proneness of a software module is the probability
that the module contains faults. A correlation exists
between the fault-proneness of the software and the
measurable attributes of the code (i.e. the static metrics)
and of the testing (i.e. the dynamic metrics). Early
detection of fault-prone software components enables
verification experts to concentrate their time and
resources on the problem areas of the software system
under development. Early lifecycle data includes
metrics describing unstructured textual requirement
and static code metrics. Various researches show that
use of static code metrics (such as Halstead complexity,
Cyclomatic complexity, McCabe’s complexity etc.) to
measure quality is inefficient complexity, The use of
single features of software to predict faults is
uninformative. Methodologies and techniques for
predicting the testing effort, monitoring process costs,
and measuring results can help in increasing efficiency
of software testing. Being able to measure the fault-
proneness of software can be a key step towards steering
the software testing and improving the effectiveness of
the whole process. In the past, several metrics for
measuring software complexity and testing
thoroughness have been proposed. Static metrics, e.g.,
the McCabe’s cyclomatic number or the Halstead’s
Software Science, statically computed on the source code

and tried to quantify software complexity. Despite this it
is difficult to identify a reliable approach to identifying
fault-prone software components. Decision tree
algorithms begin with a set of cases, or examples and
create a tree data structure that can be used to classify
new cases. Each case described by a set of attributes,
which can have numeric or symbolic values. Associated
with each training case is a label representing by the name
of a class. Each internal node of a decision tree contains a
test, the result of which is used to decide what branch to
follow from that node. The leaf nodes contain class labels
instead of tests. In order to perform the analysis we
validate the Performance of Decision Stump based
decision Tree for the Software Defect Prediction and
Study the Performance of M5 Model for the Software
Defect Prediction. In the literature [3]-[17] various types
of Fault-Proneness Estimation Models are discussed The
paper is organized as follows: section 2 explains about
the methodology followed and section 3 the result of the
study. Finally conclusions of the research are presented
in section 4.

2. METHODOLOGY FOLLOWED

The following are the steps used for the prediction of fault
prone modules: First of all, find the Qualitative and
Quantitative attributes of software systems i.e. software
metrics. The real-time defect data sets are taken from data
repository. Next step is to Select the suitable metric values
as representation of statement and The suitable metrics

mailto:sunilkhullar222@yahoo.co.in

International Journal of Computer Science and Communication (IJCSC)646

like product requirement metrics and product module
metrics out of these data sets are considered. The term
product is used referring to module level data. The term
metrics data applies to any finite numeric values, which
describe measured qualities and characteristics of a
product. The term product refers to anything to which
defect data and metrics data can be associated. And the
next step is to Analyze, refine metrics and normalize the
metric values and Explore different Decision Tree based
Techniques It is very important to find the suitable
algorithm for modeling of software components into
different levels of fault severity in software systems. The
following three decision tree algorithms are experimented:

• Decision Stump based decision Tree
• M5 Model
• fast decision Tree learner, known as REPTree.
The next step is to comparisons are made on the basis

of the more accuracy and least value of MAE and RMSE
error values. Accuracy value of the prediction model is
the major criteria used for comparison. The mean
absolute error is chosen as the standard error. The
technique having lower value of mean absolute error is
chosen as the best fault prediction technique.

2.1 Mean Absolute Error

Mean absolute error, MAE is the average of the difference
between predicted and actual value in all test cases; it is
the average prediction error [13]. The formula for
calculating MAE is given in equation 1.

1 1 2 2– – –n na c a c a c
n

+ +…+
(1)

Assuming that the actual output is a, expected output
is c.

2.2 Root Mean-squared Error

RMSE is frequently used measure of differences between
values predicted by a model or estimator and the values
actually observed from the thing being modeled or
estimated [13]. It is just the square root of the mean
square error as shown in equation 2.

2 2 2
1 1 2 2(–) (–) (–)n na c a c a c

n
+ +…+

(2)

The mean-squared error is one of the most
commonly used measures of success for numeric
prediction. This value is computed by taking the average
of the squared differences between each computed value
and its corresponding correct value. The root mean-
squared error is simply the square root of the mean-
squared-error. The root mean-squared error gives the
error value the same dimensionality as the actual and
predicted values.

The mean absolute error and root mean squared
error is calculated for each machine learning algorithm
i.e. various algorithms for Neural Networks.

3. RESULT AND DISCUSSION

The first step is to find the structural code and
requirement attributes of software systems i.e. software
metrics. The real-time defect data sets are taken from
http://promisedata.org/repository. The Qualitative and
quantitative dataset is about 31 projects completed in a
consumer electronics company (one row per project).
There is a mixture of qualitative attributes (these are
measured on a 5 point ranked scale VL, L, M, H, VH)
and quantitative attributes whose scale is stated [12].

3.1 Qualitative Factors

The Quantitative factors are grouped under five topics
[12]:

• Specification and Documentation process
• New Functionality
• Design and Development process
• Testing and Rework
• Project Management

3.2 Quantitative Factors

The following are the Quantitative factors are [12]:
• Software size: the size, in KLOC of the developed

code and the development language,
• Effort: development effort measured in person

hours for the software development, from
specification review to unit test.

The proposed Decision Tree based methodology is
implemented in WEKA environment is one such facility
which lends a high performance language for technical
computing.

In case of Decision Stump algorithm after 10 fold
cross validation the value of MAE and RMSE is
calculated as is:

• Mean absolute error 303.42
• Root mean squared error 422.6276
In case of M5 pruned model tree using smoothed

linear models the total number of faults can be calculated
using following equation:

TD = 200.6171 * F1=VH

+ 258.9974 * D1=M,VL

+ 10.0736 * K

– 52.3791
Implements base routines for generating M5 Model

trees and rules. The original algorithm M5 was invented

http://promisedata.org/repository

Investigate the Performance of Software Defect Prediction for Decision Tree Algorithm using Quantative… 647

by R. Quinlan and Yong Wang made improvements. The
following parameters are used for building the model:

• buildRegressionTree: Whether to generate a
regression tree/rule instead of a model tree/rule.

• debug: If set to true, classifier may output additional
info to the console.

• minNumInstances: The minimum number of
instances to allow at a leaf node. The value is set
to 4.

• saveInstances: Whether to save instance data at each
node in the tree for visualization purposes.

• unpruned: Whether unpruned tree/rules are to be
generated.

• use Unsmoothed: Whether to use unsmoothed
predictions.

Time taken to build model was 0.14 seconds. In case
of 10 fold cross validation the following MAE and RMSE
values are obtained:

• Mean absolute error 226.023
• Root mean squared error 301.9067
Fast decision tree learner, builds a decision/

regression tree using information gain/variance and
prunes it using reduced-error pruning (with back fitting).
Only sorts values for numeric attributes once. Missing
values are dealt with by splitting the corresponding
instances into pieces (i.e. as in C4.5). In case of 10 fold
cross validation the following MAE and RMSE values
are obtained:

• Mean absolute error 381.126
• Root mean squared error 530.7604
The following parameter options are used for

building the REPTree Model:
• debug: If set to true, classifier may output additional

info to the console.
• maxDepth: The maximum tree depth (–1 for no

restriction).
• minNum: The minimum total weight of the

instances in a leaf.
• minVarianceProp: The minimum proportion of the

variance on all the data that needs to be present at
a node in order for splitting to be performed in
regression trees.

• noPruning: Whether pruning is performed.
• numFolds: Determines the amount of data used for

pruning. One fold is used for pruning, the rest for
growing the rules.

• seed: The seed used for randomizing the data.

4. CONCLUSION

In this paper, we investigate whether qualitative and
quantitative factors can be used to identify level of

number of faulty software modules. We compare the
performance of Decision Stump based decision Tree, M5
Model and fast decision Tree learner known as REPTree,
for the fault dataset. M5 based Decision Tree shows best
results than among other decision tree algorithms
experimented in the study with lower values of MAE
and RMSE calculated as 226.023 and 301.9067 values
respectively. It is therefore, concluded the M5 Based
Decision Tree model is implemented and the best
algorithm for classification of the fault prone modules
from the faultless modules of the software systems.

The future work can be extended in following
directions:

• Most important attribute can be found for fault
prediction and this work can be extended to further
programming languages. More algorithms can be
evaluated and then we can find the best algorithm.

• Further investigation can be done and the impact
of attributes on the fault prediction can be found.

• Other dimensions of quality of software can be
considered for mapping the relation of attributes
and fault tolerance.

REFERENCES
[1] Seliya N., Khoshgoftaar T.M. and Zhong S. (2005),

“Analyzing Software Quality with Limited Fault-
proneness Defect Data”, In Proceedings of the Ninth IEEE
International Symposium on High Assurance System
Engineering, Germany, pp. 89-98.

[2] Jiang Y., Cukic B. and Menzies T. (2007), “Fault
Prediction Using Early Lifecycle Data”, ISSRE 2007, the
18th IEEE Symposium on Software Reliability Engineering,
IEEE Computer Society, Sweden, pp. 237-246.

[3] Bezdek J.C., Ehrlich R., and Full W. (1984), “FCM: Fuzzy
c-means Algorithm”, Computers and Geoscience, 10,
pp. 191-203.

[4] Khoshgoftaar T.M. and Munson J.C. (1990), “Predicting
Software Development Errors using Complexity Metrics”,
IEEE Journal on Selected Areas in Communications, 8, Issue: 2,
pp. 253 -261.

[5] Pigoski M. and Nelson E. (1994), “Software Maintenance
Metrics: A Case Study”, Proceedings of IEEE Conference
on Software Maintenance, Canada, pp. 392-401.

[6] Khoshgoftaar, T.M., Allen E.B., Ross F.D., Munikoti R.,
Goel N. and Nandi A. (1997), “Predicting Fault-prone
Modules with Case-based Reasoning”, ISSRE 1997, the
Eighth International Symposium on Software
Engineering, Mexico, pp. 27-35.

[7] Menzies T., Ammar K., Nikora A., and Stefano S. (2003),
“How Simple is Software Defect Prediction?”, Journal of
Empirical Software Engineering, 32, Issue: 2, pp.1156-1161.

[8] Eman K., Benlarbi S., Goel N., and Rai S. (2001),
“Comparing Case-based Reasoning Classifiers for
Predicting High Risk Software Components”, Journal of
Systems Software, 55, Issue: 3, pp. 301-310.

International Journal of Computer Science and Communication (IJCSC)648

[9] Munson J.C. and Khoshgoftaar T.M. (1992), “The
Detection of Fault-prone Programs”, IEEE Transactions
on Software Engineering, 18, Issue: 5, pp. 423-433.

[10] Yaun X., Khoshgoftaar M. and Allen B. (2000), “An
Application of Fuzzy Clustering to Software Quality
Prediction”, Information Sciences: An International Journal,
179, Issue: 8, pp. 1040-1058.

[11] Seliya N. and Khoshgoftaar M. (2007), “Software Quality
Analysis of Unlabeled Program Modules with Semi
Supervised Clustering”, Software Quality Journal, 37,
Issue: 2, pp. 201-211.

[12] Challagula, Bastani B. and Yen (2006), “A Unified
Framework for Defect Data Analysis using the MBR
Technique”, Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI’06),
Washington, pp. 39-46.

[13] Dav’e N. and Krishnapuram R. (1997), “Robust
Clustering Methods: A Unified View”, IEEE Transactions
on Fuzzy Systems, 5, Issue: 2, pp. 270–293.

[14] Saux B. and Boujemaa N. (2002), “Unsupervised Robust
Clustering for Image Database Categorization”, In
Proceedings of the IEEE-IAPR International Conference on
Pattern Recognition (ICPR’2002), Turkey, pp. 259-262.

[15] Stark E. (1996), “Measurements for Managing Software
Maintenance”, International Conference on Software
Maintenance, USA, pp. 152-161.

[16] Bellini P. (2005), “Comparing Fault-Proneness
Estimation Models”, 10th IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS’05),
China, pp. 205-214.

[17] Lanubile F., Lonigro A., and Visaggio G. (1995),
“Comparing Models for Identifying Fault-Prone Software
Components”, Proceedings of Seventh International
Conference on Software Engineering and Knowledge
Engineering, USA, pp. 12-19.

[18] Fenton N.E. and Neil M. (1999), “A Critique of Software
Defect Prediction Models”, IEEE Transactions on Software
Engineering, 25, Issue: 5, pp. 675-689.

[19] Runeson, Wohlin C. and Ohlsson M.C. (2001), “A
Proposal for Comparison of Models for Identification
of Fault-Proneness”, Journal of System and Software, 56,
Issue: 3, pp. 301–320.

[20] Deodhar M. (2002), “Prediction Model and the Size
Factor for Fault-proneness of Object Oriented Systems”,
Journal of System and Software, 56, Issue: 3, pp. 157-162.

[21] Ma Y. and Guo L. (2006), “A Statistical Framework for
the Prediction of Fault-Proneness”, Product Focused
Process Improvement, Edition: First, Publisher: Springer
Berlin/Heidelberg, pp. 204-214.

[22] Challagulla V.U.B., Bastani F.B., Yen I. L. and Paul (2005),
“Empirical Assessment of Machine Learning Based
Software Defect Prediction Techniques”, 10th IEEE
International Workshop on Object-Oriented Real-Time
Dependable Systems, USA, pp. 263-270.

